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ABSTRACT
Detecting malware in Internet of Things (IoT) systems is
challenging due to resource limitations. As a result, detec-
tion and classification models are often deployed in cloud
environments or distributed across devices and servers. In
distributed scenarios, transferring model weights can create
bottlenecks, with packet loss risking training stability.
This research presents a modified Visual Transformer

(ViT) that utilizes Rotational Positional Encoding (RoPE),
which takes into account network bandwidth, quality, and de-
vice status. Our model effectively resolves bottleneck issues
while ensuring accurate malware detection. Under extreme
network stress, our approach on a medium ViT achieves
82.1% classification accuracy, compared to 65.2% for the stan-
dard RoPE—a 16.9 percentage point improvement. In micro-
scale architectures, Modified RoPE reaches 97.6% accuracy
versus 84.0% for Standard RoPE, representing a 13.6 per-
centage point improvement. These results confirm that our
regularization methodology effectively maintains spatial re-
lationships during network degradation while improving
positional encoding across various architectural scales.

1 THE EDGE DEPLOYMENT DILEMMA
The Internet of Things (IoT) increasingly integrates into
daily life alongside the expansion of machine learning al-
gorithms and models [6]. However, significant challenges
arise from device capacity limitations and the growing size
of models [4]. While existing approaches achieve high ac-
curacy in controlled environments, they often experience
catastrophic failures under real-world conditions, such as
network degradation and device constraints. Studies indicate
accuracy drops exceeding 40% when the Link Quality Index
(𝛾 (𝜉)) falls below 70 dBm [3], with false alarm rates of 32% in
low-battery scenarios [7]. Moreover, the IoT landscape lacks
established security standards, and as malware sophistica-
tion increases exponentially [1, 5], protective technologies
must be lightweight yet complex enough for effective threat
identification and classification.
Due to these constraints, most transformers deployed in

IoT environments do not utilize Rotational Positional Encod-
ing (RoPE), despite its demonstrated effectiveness in enhanc-
ing transformer performance [9]. Additionally, incorporating
spatial-aware information can improve performance without
significantly increasing model parameters [2].

Figure 1: Representation of the spatial regularization based on the
network and devices metadata (𝜆). If 𝜆 = 1, the spatial relationships
are identical to classical RoPE; if the metadata indicates a bad net-
work and device condition, the spatial structure is simplified.

A notable example of lightweight ViT for malware detec-
tion on edge devices is presented by [7], which integrates
learnable position embeddings into patch embeddings. This
study proposes a framework that converts executable files
into images, achieving 94% detection accuracy with reduced
inference latency and increasing speedup over standard ViT
models. However, it is limited by its reliance on static analy-
sis and does not account for device status, instead focusing
on the embedding of input data.
This research introduces a regularized, metadata-aware

RoPE mechanism that dynamically adjusts positional atten-
tion using system-level observations, maintaining model
structure and avoiding explicit positional embedding learn-
ing. A simple representation of the idea is shown in Fig-
ure 1. To validate these concepts, we conduct an evaluation
study examining different ViT configurations and their per-
formance across various network conditions. The ViTmodels
compared include the standard version (analogs to [7]), with
RoPE, and with our modified version. We validate the data
on the Malicious Network Traffic PCAPs and binary visual-
ization images (MNT) Dataset [8], which is a traffic-based
dataset created from pcap files.

1



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary Chiara Camerota et al.

Figure 2: Medium ViT variants achieve 98.3-99.5% accuracy under
severe network stress (0-25% packet loss, 0-500ms delays). Modified
RoPE excels in extreme conditions (99.5%), highlighting its robust-
ness for reliable deployment in mobile, edge, and disaster scenarios,
and ensuring effective spatial classification in unstable networks.

2 METHODOLOGY
The Rotary Positional Embedding is a methodology intro-
duced in [10], which introduces a spatial relationship in the
transformer to increase and stabilize the performance. In
this work, we propose a regularization of the angle of RoPE
based on the device and network metadata:

𝜃 = 𝜃𝜆̃, 𝜆̃ ∈ [0, 1] → 𝑹Rope (𝜃 ) (1)

Where 𝛾 represents the regularization parameter that bal-
ances device-centric and network-centric spatial representa-
tions. The regularization parameter combines local device
health Γ and network quality 𝛾 (𝜉):

Γ = Sigmoid(
∑︁

𝑤𝑝𝛼𝑝 ) (Local health) (2)

𝜆̃ = 𝜙𝛾 (𝜉) + (1 − 𝜙)Γ, 𝜙 ∈ [0, 1] (Global adjustment) (3)

where 𝛼𝑝 represents the devices’ metrics (battery, CPU, stor-
age, GPU) and 𝜙 controls the balance between network and
device signals. We can calculate the optimal 𝜙 minimizing
the expected Frobenius-norm error at the time-step 𝑘 :

MSE(𝜙) = E
[
∥𝑅𝑑Θ (𝑘) − 𝑅𝑑Θ,true∥2𝐹

]
(4)

Assuming Γ(𝑘) ∼ N (𝑅𝑑Θ,true, 𝜎2𝐼 ), this yields:

𝜙opt =
𝜎2

(E[𝛾 (𝜉)] − 1)2 + 𝜎2 (5)

This formulation ensures that during network instability
(𝛾 (𝜉) → 0), device metadata dominates to preserve local
spatial relationships. Conversely, during device stress (Γ →
0), network metadata maintains global spatial awareness,
stabilizing the model under challenging conditions.

Figure 3: By delivering 97.6% accuracy in amicro-scale architecture,
Modified RoPE opens the door to resilient AI in previously extreme
network scenarios

3 EXPERIMENTAL EVALUATION
We conducted a comparative evaluation of Modified RoPE,
Standard RoPE, and Standard ViT across five network stress
levels that simulate real-world scenarios, including WiFi
interference and disaster conditions. The evaluation encom-
passed conditions from ideal (0% packet loss, 0 ms delay) to
extreme degradation (40% packet loss, 200-500 ms delay, 30%
bandwidth). As shown in Figure 2, the medium-scale archi-
tecture (32D embeddings, 2 heads) demonstrates superior
robustness, maintaining an accuracy of 82.1% under extreme
stress, compared to Standard RoPE’s 65.2%. This underscores
its efficacy in unstable network environments where tra-
ditional methodologies are inadequate. At the same time,
as we show in Figure 3, in micro-scale conditions (4D em-
beddings, 1 head), Modified RoPE achieved 97.6% accuracy,
surpassing Standard ViT’s 90.5% and Standard RoPE’s 84.0%
with the worst network condition. These results demonstrate
that enhanced positional encoding significantly improves
model performance, even within resource-constrained ar-
chitectures. Consequently, Modified RoPE is positioned as a
critical component for malware detection and other AI appli-
cations, as well as edge computing scenarios characterized
by network instability and computational limitations.

4 CONCLUSION
This work introduces a Modified RoPE approach to enhance
IoT malware detection in unstable network conditions by
employing a regularization methodology. The key contribu-
tion lies in the effective fusion of local device health and
global network conditions, providing a solution for main-
taining detection accuracy in resource-constrained environ-
ments. Future research will focus on exploring knowledge
distillation and temporal network pattern analysis to further
optimize detection capabilities in IoT applications.
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