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Abstract—With the growing integration of renewable energy 
sources into distributed grids, accurate household‐level load 
forecasting becomes essential for robust energy management and 
optimization. This paper proposes a lightweight stochastic profile 
generation method grounded in conditional probability 
approximation. First, empirical conditional distributions are mined 
from historical load data via hourly histogram binning and 
correlation analysis. Second, a Monte Carlo‐inspired “flock” of 
plausible future load trajectories is generated iteratively, each 
endowed with an occurrence probability. Validation on the Ausgrid 
dataset (127 prosumer profiles over one year) shows that the 
probabilistic mining step requires only 0.5–0.6 s for history depths of 
30–180 days, while generating 200 scenarios takes merely 8.1 ms, 
with a total memory footprint of approximately 200 KB. These 
computational and storage efficiencies render the approach suitable 
for online deployment on edge devices, enabling robust optimization 
under uncertainty in renewable energy communities.  

Keywords— Load Profile Generation; Load Forecasting; 
Optimization Under Uncertainty; Energy Management 

I. INTRODUCTION 

The world in which we live is being transformed every day. 
One of such transformations is climate change, which is 
affecting things taken for granted, even just a few years ago [1]. 
These changes are threatening our habits and our future. To 
fight what is considered the major cause of this shift, namely 
the uncontrolled increase in CO₂ emissions over the last 
century, it is becoming more and more important to pursue the 
Green Transition at a steady pace [2]. 

 An increased penetration of Renewable Energy Sources 
(RES) brings additional tangible benefits, such as reduced air 
pollution and, even if gradually, a significant impact on energy 
prices [3]. This trend has also caused a market drop in the cost 
of plant installation, especially photovoltaic ones, allowing for 
further and distributed adoption in forms of household 
generation systems [4]. This domestic application has an 
important impact on the interaction between domestic users and 
the grid, creating new figures that absorb or inject energy into 
the network, called prosumers [5].  

Even though these changes are overwhelmingly positive, 
there are some important issues to address [6][7]. First, the most 
common and economic RES, i.e., solar and wind energies, are 
characterized by a high degree of uncontrollability. In a few 
words there is no way to use them to produce energy on 
demand. Second, this distributed approach has already led to 
widespread presence of productions plants, therefore, to reduce 

transmission losses, it makes sense to coordinate the 
consumption of the nearby users with such generations [8]. 

In this context, topics such as demand response [9], optimal 
power flow [10][11] and Vehicle To Grid (V2G) [12]-[14] have 
become of primary relevance. It is important to integrate 
renewable energy sources in the planning of energy usage, 
generally handled by control systems known as Energy 
Management Systems (EMS) [15]-[19]. To perform such 
scheduling, these systems should rely on forecasting of both the 
production of those uncontrollable but green sources and of the 
load demand [20][21].  

The Load Forecasting, especially at a granular level such as 
for domestic household, is a tricky problem. There are many 
techniques to address it, but it is difficult to reach high 
accuracy, especially considering constraints such as hardware 
limitations or data scarcity. Since handling this uncertainty is 
mandatory for robust planning, multiple techniques have been 
developed to increase the scheduling robustness [22]. 

To implement an approach like this, forecasting a single 
profile is not enough: at every iteration, a whole “flock” of 
possible futures is needed. To be usable, these multiple 
scenarios must remain consistent with the behavior of the user 
under management but cover as many possibilities as possible. 
This leads to handle the Profile Generation problem. 

A recent examination of load profile generation methods 
reveals significant advancements in model design and 
benchmarking. While sophisticated generative models such as 
Variational Autoencoders (VAEs), Generative Adversarial 
Networks (GANs), and Denoising Diffusion Probabilistic 
Models (DDPMs) are increasingly utilized for creating 
synthetic load profiles, their practical application remains 
limited. This limitation is mainly due to high computational 
requirements, substantial data needs, and increased energy 
consumption [23][24][25]. These challenges become 
particularly pressing when applying these models on edge 
devices or in resource-constrained environments. To address 
these issues, researchers are exploring alternative and hybrid 
strategies that include flow-based models with specific loss 
functions, reinforcement learning-enhanced InfoGANs, and the 
integration of VAEs with Non-Intrusive Load Monitoring 
(NILM) techniques. 

For example, Xia et al. [26] introduce a novel full-
convolutional normalizing flow architecture. They evaluate its 
performance using Pinball Loss and Continuous Ranked 
Probability Score, showing that it surpasses a t-Copula baseline  
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Table 1. Ausgrid Dataset content description 

in probabilistic forecasting tasks. However, its high 
computational demands still restrict its application, and they 
also utilize metadata such as weather conditions to enhance 
performance. 

Lan et al. [27] present a reinforcement learning-augmented 
InfoGAN model, which is tested using Maximum Mean 
Discrepancy to ensure it maintains distributional fidelity. 
Despite this, the model’s complexity limits its portability and 
scalability, and some of the features used may not always be 
accessible. 

In another study, Förderer and Schmeck [28] focus on state-
based load modeling for Distributed Energy Resources. Their 
work emphasizes action mapping and forecasting profiles for a 
single temporal step, specifically one hour. 

In summary, these studies highlight improvements in 
predictive accuracy, generative diversity, and interpretability. 
However, they also reveal trade-offs regarding scalability, 
model transparency, and operational feasibility. The literature 
stresses the need for next-generation generative models that are 
not only statistically valid but also efficient enough for practical 
implementation in real-world, resource-constrained energy 
systems. Therefore, future research should aim to develop 
innovative methods that enhance the effectiveness and 
applicability of synthetic load profile generation. 

This work presents a stochastic approach to profile 
generation, developed with a strong focus on explainability, 
computational cost, and the quality of the generated flock. 

II. METHODOLOGY 

This section details the proposed methodology. The 
recommended approach involves creating a set of probable 
future profiles by analyzing recent historical data for effective 
optimization. Specifically, the goal is to identify and leverage 
the profile distribution to improve forecasting and consequently 
enhance the system's performance.  

It encompasses two distinct phases: first, estimating the 
conditional probability distributions that characterize the time 
series in question, and second, producing profiles from the 
previously gathered data. The next paragraph expands on these 
procedures, while Fig.5 shows generation diagram. 

The method was validated using the Ausgrid datasets to 
confirm its effectiveness. It includes 127 profiles of production 
and consumption from prosumers, each covering a year. Table 
1 describes the dataset's contents.  

A. Step 1: Conditional probabilities approximation 

The first step is to approximate the conditional probabilities 
to feed the profile generator. The underlying idea is that 
stochastic patterns govern a load consumption time series.  

For instance, household load profiles show clear daily 
seasonality, making it reasonable to hypothesize the presence 
of a correlation between the hours and the existence of 
conditional probabilities linking past and future timesteps. For 
simplicity, from this point onward, the chosen timestep is one 
hour. 

The “mining” of the probabilistic properties of a profile 
starts from its historical data. The history consists of N 
available days, each counting 24 hours. Thus, it is possible to 
define 𝑌, the history length, as follows: 

𝑌 = 𝑁 ∗ 24  [ℎ𝑜𝑢𝑟𝑠] (1) 

 

Fig. 1. Sequences definition in the Dataset and split in H groups.  

Then, we define knowledge K as the number of past hours used 
for generating the future profiles and generation horizon G as 
the length of hours used to generate those profiles. This allows 
us to calculate how many sequences we need and their length 
for segmenting the historical data.  

𝑙௦௘௤ = 𝐾 + 𝐺  [ℎ𝑜𝑢𝑟𝑠] (2) 

𝑁௦௘௤ = 𝑌 − 𝑙௦௘௤ + 1 (3) 

The 𝑁௦௘௤  sequences can be grouped based on similarity, 
leveraging the property of periodicity, leading to 24 distinct 
groups. Each group will count 𝑁௦௘௤

ு  sequences and correspond 
to a specific hour 𝐻 ∈ [1,24 ]. This procedure is shown in Fig. 
1. 

Histograms can be created to approximate the distribution 
of values for each group 𝐻 at every hour. Each histogram 
consists of a defined number of bins, 𝑁௕௜௡௦, with the first and 
last centers corresponding to the minimum and maximum 
values observed during that hour, as shown in Fig. 2. The bin 
edges are set to ensure equal widths for all bins. For the final 𝐺 
hours, the expected values for each bin are determined by the 
means of the two edges. 

The next step is to investigate the relationship between each 
of K’s past time steps and the target hour. Hence, the correlation 
and the influence within the past and the future bins are 
analyzed. Also, to make understanding easier, let us consider  
𝐺 = 1 from this point onward. 

 

Fig. 2. Histogram bins definition. 



 

Fig. 3. Correspondence example between histograms at a past step 
k and a g step 

The correlations, 𝐶𝑜𝑟𝑟௚|௞
ு , with 𝑘 ∈ [1, 𝐾] and 𝑔 ∈ [1, 𝐺] 

are computed and stored in an array. The correspondence 
between the bins of each of the k past steps and the bins of the 
landing 𝑔 is analyzed. An example of this step is shown in Fig. 
3. 

At this point, we have the empirical absolute distribution. 
To obtain an approximation of the conditional probability 𝑃௚|௞

ு , 
the probability of the value assumed at the step 𝑔, knowing the 
value assumed at step k, we must normalize these results by the 
counts. An example is shown in Fig. 4. 

B. Step 2: Flock profile generation 

After determining the last K known past values of a load 
consumption time series, labeled as 𝑋௣௔௦௧, we can integrate 
these into the generation of a “flock” of 𝐹 possible and plausible 
future trajectories. Each of these profiles extends into the future 
for a horizon 𝐿 steps long.  

The elements of each possible future profile are generated 
step by step. For each 𝑙 ∈ [1, 𝐿 ], starting from the first, the 
corresponding group 𝐻 is identified. Then, the 10% of past 
steps more correlated to this position are selected and defined 
𝐾ଵ଴%. For each of the 𝑁𝑘ଵ଴% steps, a candidate 𝑋௟௔௡ௗ

௟,௞  is 
randomly generated using the corresponding 𝑃௚|௞

ு by sampling a 
bin and assigning its associated expected value.  

𝑋௟௔௡ௗ
௟,௞ ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ൬𝑃௚|௞

ு ቀ⋅ ቚ𝑋௣௔௦௧(𝑘)ቁ൰  ∀ 𝑘 ∈  𝐾ଵ଴% (4) 

 Finally, the value 𝑋௟௔௡ௗ
௟  is obtained as a weighted average 

of  𝑋௟௔௡ௗ
௟,௞ , using correlation values 𝐶𝑜𝑟𝑟௚|௞

ு  as weights. 

𝑋௟௔௡ௗ
௟ =

ଵ

ே௞భబ% 
∗ ∑  𝑋௟௔௡ௗ

௟,௞
௞ ∈ ௄భబ% ∗ 𝐶𝑜𝑟𝑟௚|௞

ு  (5) 

 To evaluate the probability of occurrence of 𝑋௟௔௡ௗ
௟ , the 

conditional probability is reverse using 𝑃௚|௞
ு .  

 

Fig. 4. Passage from an absolute relationship to a conditional 
landing probability. 

 

Fig. 5. Step 2 detailed flowchart explanation 

 The probability 𝑃௑௟௔௡ௗ
௟  is assigned based on the bin to which 

𝑋௟௔௡ௗ
௟  belongs within 𝑃௚|௞

ு . The generated bin is considered 
“impossible” if the associated probability is zero. In that case, 
𝑋௟௔௡ௗ

௟   is replaced with the value corresponding to the bin with 
the highest conditioned probability concerning the most recent 
step 𝑘  and is replaced with this value. 

 



 
Fig. 6. Exception 1 flowchart explanation 

The procedure is iteratively repeated by removing the oldest 
sample and appending the newly generated one as the most 
recent observation. At the end of the process, what is left is a 
newly generated profile 𝑋௟௔௡ௗ

௙  of 𝐿 steps, produced based on the 
original known history. 

Once the profile has been generated, an overall probability 
of occurrence can be associated by concatenating all the 
conditional probabilities of each generated step. 

𝑃௟௔௡ௗ
௙

= 𝑃௟ୀଵ|௄
ு  ∗ ∏ 𝑃௟ାଵ|௟

ு
௟ ∈[ଵ,௅ିଵ]   (6) 

The procedure is repeated for each of the 𝑓 ∈ [1, 𝐹] desired 
profiles, resulting in a flock of 𝐹 distinct and plausible future 
scenarios, each coupled with its own occurrence probability. 

B.1  Limitations of Step 2 
Our methodology introduces two exceptions to the procedure.  
The first exception addresses the arrival of a new input value 
that cannot be assigned to any admissible bin, thereby making 
it impossible to define the conditional probability ( 𝑃௚|௄

ு  ) for 
the subsequent step.  

As a bin can be seen as a cluster, it is reasonable to consider 
the value part of the closest 𝑏𝑖𝑛௝∗ in terms of edge proximity 
and utilizing the associated probability of that bin.  

 
𝐿𝑒𝑡 𝑏𝑖𝑛௝∗ = arg min

௝
ห𝑒𝑑𝑔𝑒𝑠൫𝑏𝑖𝑛௝൯ − 𝑋௣௔௦௧(𝐾)ห  (7) 

𝑋௟௔௡ௗ
௟,௄ ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ൬𝑃 ቀ⋅ ቚ𝑋௣௔௦௧(𝐾)ቁ൰  =  𝑃௚|௄௝∗

ு   (8) 

The second issue arises when a generated value 𝑋௟௔௡ௗ
௟  falls 

into a bin unreachable from the bin of the previous step 
𝑋௣௔௦௧(𝐾). In such instances, we resolve the problem by 
selecting the bin with the highest occurrence probability 
relative to the preceding bin. 

 

𝑃௚|௄
ு ቀ𝑋௟௔௡ௗ

௟ ቚ𝑋௣௔௦௧(𝐾)ቁ = 0  (9) 

𝑋௟௔௡ௗ
௟ = 𝐸ൣ𝑏𝑖𝑛௝∗൧ 𝑤𝑖𝑡ℎ 𝑗∗ = 𝑎𝑟𝑔 max

𝑗
𝑃𝑔|𝐾

𝐻 ቀ𝑋𝑙𝑎𝑛𝑑
𝑙 ቚ𝑋𝑝𝑎𝑠𝑡(𝐾)ቁ (10) 

 

Fig. 7. Exception 2 flowchart explanation. 

III. RESULTS 

 
Fig. 8. Example of generation of the flock of profiles, whit the intensity 
of the blue that represents the density of the generated profiles. 

 
The procedure was condensed in a block that, based on a 

known past, allows for generating a flock of possible futures. 
This tool can be used for the implementation of advanced 
optimization techniques to handle uncertainty in the forecasts. 
The following results were obtained by testing the procedure on 
MATLAB R2024a, run on a machine with the following 
characteristics: 

 Processor, Intel Core i9-139000K  

 RAM, 32 GB.  

 One of the advantages of this approach is the simplicity of 
extracting information from the time series. The approximation 
of the conditional probability is a fast procedure, and its 
computational cost is negligible compared to training a neural 
network. This aspect becomes critical in online time-series 
applications, where brand new data keep flowing and must be 
continuously incorporated by updating the information 
available. In the case of household load-consumption 
especially, it is essential to consider a high variability in user 
behavior as the time passes. That means such instruments must 
be updated frequently to address those changes. 

 The time required for the “mining” of information depends 
on the size of dataset representing the user’s history so far, from 
which the stochastic information will be extracted. In all tests 
so far, this time remained in the 0.5-0.6 s window: 0.5 s for a 
history depth of 30 days and about 0.6 s for a history depth of 
180days.  

The generation time cost shows an almost linear dependency on 
the size of the requested flock. In the test performed, generating 
200 profiles took 8.1 ms. 

 Another important aspect is the memory cost.  

𝑀𝑒𝑚𝑜𝑟𝑦௖௢௦௧  ≅ 2 ∗ (𝑁௕௜௡௦)ଶ ∗  𝑁𝑘ଵ଴% ∗  𝐻 ∗ 𝑁஻௬௧௘        (11) 

𝑤𝑖𝑡ℎ 𝑁𝑘ଵ଴% ≈  𝐾
10ൗ  



 The memory cost to store this information manifests a 
quadratic dependency from 𝑁௕௜௡௦ and a linear one to  𝐾, 𝐻 and 
𝑁஻௬௧௘. The latter represents the size of the chosen variable type. 
For this work it was considered a 𝐾 = 72 hours, 𝑁௕௜௡௦ = 10 and 
the chosen variable type (or single in Matlab), with a weight 
𝑁஻௬௧௘ = 4 bytes. The resulting memory occupancy will be ~200 
KB, potentially allowing implementation of this mechanism on 
a microcontroller. 

 For validate our results, we compare the prediction with a 
Denoising Diffusion Probabilistic Model, and with the VAE 
and the GAN used in [27]. Regarding the metrics, we choose: 
Mean Absolute Error (MAE), Dynamic Time Warping (DTW), 
Rolling Mean Squared Error (MSE), and Continuous Ranked 
Probability Score (CRPS). The results are presented in Table 2.  

 MAE computes the average absolute difference between 
predicted and actual values, reflecting the overall point-wise 
accuracy of the model by penalizing all errors equally. Rolling 
MSE, a variant computed over a moving window, captures the 
model’s ability to maintain local consistency and smoothness 
in sequential data, which is crucial in time-series generation 
tasks.  

 DTW measures the minimum cumulative cost required to 
align the predicted sequence with the ground truth, allowing for 
non-linear temporal warping; thus, lower DTW values indicate 
a better match in the temporal structure of the sequences. 

  CRPS evaluates the accuracy of probabilistic forecasts by 
measuring the distance between the predicted cumulative 
distribution function and the actual observation, providing a 
continuous generalization of metrics like the Brier score and 
offering insights into both calibration and sharpness of the 
predicted distributions.  

 Our Method demonstrates a distinct advantage in 
probabilistic forecasting, achieving the lowest CRPS among all 
evaluated models. This finding indicates that it provides the 
most well-calibrated uncertainty estimates, which are 
particularly valuable in various application contexts. 
Furthermore, its performance in Mean Absolute Error is 
competitive, closely mirroring that of the Variational 
Autoencoder model, thereby suggesting strong point-wise 
prediction capabilities. 

 However, it is important to note that the high DTW score 
signifies a weaker temporal alignment. This implies that while 
individual values may exhibit accuracy, the overall sequence 
shape may not align perfectly with the true trajectory. 
Nevertheless, the relatively low variance in both MAE and 
CRPS observed across runs underscores consistent 
performance, affirming that our method is particularly well-
suited for scenarios where probabilistic accuracy and forecast 
reliability take precedence over precise temporal structure. 

 Conversely, the VAE displays superior overall 
performance, characterized by the lowest errors across all 
metrics. Its low MAE and Rolling Mean Squared Error indicate 
high point-wise accuracy and smooth predictions. Additionally, 
the minimal DTW and CRPS associated with the VAE reflect 
strong temporal alignment and reliable probabilistic forecasts.  

Model 
MAE 

(90% CI) 
DTW 

(90% CI) 
Rolling MSE 

(90% CI) 
CRPS 

(90% CI) 

DDPM 0.500 ± 0.33 4.500 ± 5.59 0.600 ± 0.33 0.400 ± 0.66 

GAN 0.370 ± 0.82 5.170 ± 3.78 0.170 ± 0.33 0.370 ± 0.77 

VAE 0.170 ± 0.36 3.000 ± 2.84 0.070 ± 0.14 0.170 ± 0.36 

Our Method 0.191 ± 0.19 8.991 ± 3.95 0.316 ± 0.11 0.129 ± 0.27 

Table 2. Metrics comparison. The mean and the confidence interval (level 
90%) of the 50 trials are presented. 

 These results suggest that the VAE is exceptionally well-
suited for applications that require both precision and 
trustworthy uncertainty quantification. 

 Moreover, our methodology achieves the minimal 
confidence interval, indicating robust and stable estimations, 
along with consistent behavior across runs. This characteristic 
is advantageous in contexts where reproducibility is essential. 
Notably, our methodology is designed for ease of 
implementation and does not necessitate specialized hardware, 
such as a GPU. The stochastic approach to profile generation 
proves to be a valuable alternative, particularly when 
computational resources are limited, enabling significant 
computational cost savings while delivering performance 
comparable to more complex techniques. 

IV. CONCLUSIONS 

The stochastic approach to profile generation proves to be a 
valuable alternative, especially when computational resources 
are limited. 

By avoiding any explicit training phase, the method achieves 
significant computational cost savings while delivering 
performance comparable to more complex techniques. 

As outlined, this method was designed for integration within 
a robust optimization framework and will be extended in future 
work to enable real-time, robust planning for domestic 
prosumers. 
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