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Abstract—Communication bottlenecks remain a key challenge
in Federated Learning (FL), particularly in dynamic and resource-
constrained environments. While compression strategies such as
sparsification and quantization reduce communication overhead,
they are typically agnostic to runtime variability and the semantic
relevance of updates. This paper introduces SCALP (Selective
Compression via Adaptive Lightweight Protocol), a novel hybrid
communication compression mechanism that jointly considers
local gradient variance and uplink bandwidth to guide adaptive
filtering decisions. Each worker dynamically selects a compression
level mapped to a tunable filtering ratio, balancing communication
reduction and update relevance. The selected compression level
is encoded as a 2-bit signal embedded in the Explicit Congestion
Notification (ECN) field of the IP header, enabling stateless,
lightweight signaling without modifying transport-layer protocols.
Experimental results on CNN and CNN-LSTM models over the
CMAPSS dataset show that SCALP reduces transmitted data
by over 25% while maintaining convergence time within 2%
and achieving up to 2.15% higher final accuracy compared to
baseline methods. Comparative analysis against Deep Gradient
Compression (DGC) and bandwidth-aware filtering confirms
SCALP’s ability to integrate gradient-level relevance and network
conditions for robust, efficient training in bandwidth-constrained
FL scenarios.

Index Terms—Networks for Learning, Gradient Compression,
Bandwidth Adaptation.

I. INTRODUCTION

Network operators and major Internet companies increasingly
deploy distributed learning tasks across their infrastructures
to optimize internal services such as load balancing, content
delivery, and anomaly detection, as well as for user-facing ap-
plications like targeted advertisement. Federated Learning (FL)
has emerged as a key enabler for training machine learning
models without centralized data aggregation, allowing clients
to collaboratively train shared models across heterogeneous
nodes. However, efficiently executing FL on the edge-to-cloud
continuum presents significant challenges due to dynamic
network conditions, resource heterogeneity, congestion, and
limited coordination [1]-[4].

In such environments, communication bottlenecks often
prolong training convergence, resulting in increased energy

consumption and latency [5], [6]. Conventional FL architectures
typically assume static placement of parameter servers (PS),
which exacerbates inefficiencies when network variability
affects communication links. To solve these issues, prior work
has proposed model compression techniques such as Deep
Gradient Compression (DGC) [7] and FedZip [8], which reduce
uplink traffic through sparsification and quantization. However,
these strategies typically apply static compression policies,
making them agnostic to runtime network conditions.

In heterogeneous edge deployments, static compression can
lead to information loss under degraded links, exacerbate strag-
gler effects when clients operate with asymmetric bandwidth,
and increase convergence time when multiple jobs compete
for limited resources [9], [10]. Moreover, existing techniques
often treat all gradient updates equally, regardless of their
contribution to model convergence, resulting in inefficient
bandwidth usage. Recent advances in semantic communication
have emphasized the importance of transmitting task-relevant
information over raw gradients. By extracting semantically
meaningful components, these approaches aim to retain only
the most relevant updates [11], [12]. Adaptive compression
strategies have also emerged to improve communication effi-
ciency and fairness. For instance, AdaGQ [13] adjusts gradient
quantization based on local variance and device capabilities,
while Caesar [14] employs data-aware heuristics to improve
update quality under non-IID conditions. FedCG [15] jointly
optimizes client selection and compression to mitigate straggler
effects, and AdapComFL [16] predicts uplink bandwidth
capacity to dynamically adjust sketch sizes. While these
approaches advance the state of adaptive compression, they
remain largely agnostic to the semantic relevance of updates
and their direct impact on model convergence.

To address these challenges, SCALP (Selective Compression
via Adaptive Lightweight Protocol) is introduced as an adaptive
gradient compression mechanism that improves communication
efficiency and training robustness in FL. SCALP employs a
hybrid decision policy that enables each worker to select a
compression level based on both the statistical variance of



its local gradient updates and the current uplink bandwidth
condition. This strategy allows the system to prioritize the
transmission of semantically relevant updates under constrained
network conditions, reducing communication overhead without
compromising learning performance. The selected compression
level is encoded using a 2-bit signal embedded into the
Explicit Congestion Notification (ECN) field of the IP header,
supporting lightweight, stateless coordination with the PS.
While ECN-based signaling primarily targets intra-domain
deployments, such as edge-cloud infrastructures or managed
data center environments, the adaptive compression policy of
SCALP, which is grounded in gradient variance and bandwidth
awareness, is a generalizable strategy. It could be adapted
with alternative signaling mechanisms to support broader
applicability in wide-area FL scenarios.

II. SYSTEM DESIGN

To improve communication efficiency and training robustness
under variable network conditions, SCALP introduces an
adaptive compression mechanism that reacts to both learning
dynamics and real-time bandwidth observations. In contrast
to static schemes that map bandwidth quartiles to fixed
compression levels, SCALP jointly considers the statistical
relevance of local updates and current link quality to inform
compression decisions.

Each worker n € A begins by computing the variance of
its local gradient vector, used as a proxy for the diversity
and magnitude of its update. This variance, defined in (1),
is computed over the gradient components g; with respect
to their mean u. A low variance indicates minimal deviation
from the current global model, suggesting limited contribution,
while high variance reflects a more substantial update likely
to influence convergence.

ey

Simultaneously, the node monitors its uplink bandwidth B,,
through passive throughput sampling and telemetry. As defined
in (2), the compression level C,, € {0,1,2, 3} is selected using

a rule-based policy that combines gradient variance 0527 and
low-bandwidth threshold 7T}oy .
0, if ag < 0 and B,, < Tiow,
e 2
C, = 1, ifoy < 0 and B,, > Tiow, @)

2, if o} >0 and By, < Tiow,
3, if o7 >0 and B, > Tioy.

The variance threshold is set to @ = 1072, based on empirical
observations during model convergence. This value aligns
with findings in [17], which show that gradient variance
typically decreases as training progresses and serves as a
reliable indicator of low-impact updates. The low-bandwidth
threshold is defined as Tjow = 5 Mbps, reflecting congestion
levels commonly observed in edge deployments. Prior analyses
indicate that uplink throughput in such environments, partic-
ularly under contention or near cell boundaries, often ranges
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Fig. 1. SCALP overview: Each worker independently selects a filtering ratio
based on local gradient variance and observed uplink bandwidth. Line width
reflects link capacity, and the PS decodes ECN values to interpret each worker’s
filtering level.

between 5 and 10 Mbps [18]. Selecting Ti,w = 5 Mbps ensures
that compression is selectively applied under constrained
conditions, while remaining representative of realistic intra-
domain scenarios. The impact of varying both 6 and 7j,, on
training performance and communication efficiency is further
evaluated in Section III.

Moreover, the selected compression level C), is mapped
to a filtering ratio p € {0.1,0.25,0.5,1.0}, where lower
values of C,, correspond to more aggressive filtering, thereby
reducing the communication payload. These specific ratios
are informed by established sparsification studies in adaptive
gradient compression [7], [19], [20], which investigate the
effect of retaining various proportions of gradient components.
These works demonstrate that retention fractions as low as 10%
can still preserve convergence under certain conditions, while
enabling substantial communication savings. Although this ex-
act progression is not standardized, it provides a balanced range
from highly constrained to unconstrained settings, supporting
flexible adaptation to bandwidth availability while preserving
gradient significance. The lowest ratio (p = 0.1) aggressively
suppresses low-impact updates under limited connectivity,
whereas the highest ratio (p = 1.0) retains the full gradient to
preserve fidelity in favorable conditions. Intermediate values
are selected to offer practical granularity without incurring the
complexity of finer-scale tuning. This design simplifies runtime
decision-making and supports efficient compression control
with minimal signaling overhead.

To communicate the compression level to the PS without
coordination overhead, each worker encodes the 2-bit value
of C, into the ECN field of the IP header [21]. This
signaling approach eliminates the need for protocol changes
or explicit control messages and remains compatible with
most deployment scenarios, such as edge clusters and data
centers. While ECN may be stripped by legacy or wide-area



middleboxes, prior studies [22] show that less than 1% of ECN-
capable paths fail due to such interference. SCALP targets
controlled environments where ECN semantics are preserved.
Fallback mechanisms can be used if ECN support is unavailable,
but alternative headers like DSCP [23] or TCP options [24]
involve higher protocol overhead or limited support, making
ECN a practical and efficient solution.

As illustrated in Fig. 1, each worker dynamically selects
a compression level based on its local gradient variance and
uplink bandwidth conditions. This level is encoded as a 2-
bit value embedded in the ECN field of the IP header and
transmitted with the gradient updates. The line width in the
figure reflects the available link capacity. On the receiver side,
the PS decodes the ECN field to infer the filtering ratio applied
by each worker, enabling bandwidth-aware and variance-
sensitive aggregation. This stateless signaling mechanism
avoids explicit coordination or protocol modifications and
supports consistent model convergence under heterogeneous
network conditions.

III. EVALUATION

This section presents a comprehensive evaluation of SCALP
under realistic FL. conditions using the CMAPSS dataset [25]
and the hybrid Convolutional Neural Network (CNN) Long
Short-Term Memory (LSTM) architecture proposed in [26].
The evaluation is structured in three phases. First, SCALP
is evaluated against the training baseline from [26] to assess
its impact on training time, communication overhead, and
model accuracy. The default thresholds used throughout the
evaluation are § = 1072 and Tj,,, = 5 Mbps, selected based on
observed convergence behavior [17] and common congestion
levels in edge networks [18], respectively. Next, a parameter
impact analysis quantifies how variations in SCALP’s two
compression parameters, the gradient variance threshold 6 and
the low-bandwidth threshold Tj.y, influence performance trade-
offs. Finally, SCALP is benchmarked against two representative
compression strategies: bandwidth-aware filtering [27] and
DGC [7], to validate the advantages of its dual-adaptive
design. The accuracy target is set to 90% across all training
iterations to enable fair convergence comparisons. To ensure
statistical robustness, each performance metric is averaged
over ten thousand independent cycles and reported with a 95%
confidence interval.

Table I compares SCALP with the baseline [26] using the
default thresholds # = 1073 and Tiow = 5Mbps. SCALP
reduces total transmitted data by approximately 24.9% for CNN
and 25.8% for CNN-LSTM, while maintaining convergence
times within 2.0% of the baseline. These improvements are
achieved through bandwidth-aware filtering, which prioritizes
the transmission of semantically relevant gradients.

Due to its sequence modeling capabilities and favorable
trade-off between communication efficiency and training per-
formance, the CNN-LSTM model is selected to evaluate
SCALP under deployment-specific configurations. The analysis
examines the two main compression triggers: the gradient
variance threshold 6 and the low-bandwidth threshold 7.

TABLE I
COMPARISON OF TRAINING TIME AND TRANSMITTED DATA BETWEEN
SCALP AND THE BASELINE [26] FOR CNN AND CNN-LSTM MODELS.

Metric | Baseline [26] | SCALP

CNN Model

Training Time to

90% Accuracy (s) 2165.91 £ 31.96

2210.02 £ 21.44

Total Data

Transmitted (KB) 498.66 + 4.28

374.75 £ 2.80

CNN-LSTM Model

Training Time to

90% Accuracy (s) | 434423 £ 3327

4579.66 £+ 22.14

Total Data

Transmitted (KB) 394.44 + 1.81 292.76 + 1.62
TABLE II
EVALUATION SCENARIOS FOR SCALP THRESHOLD PARAMETER IMPACT.
Scenario | Parameter Metrics Values
1 0 - Final Accuracy 10~4,1073,10~2
- Transmitted Data
2 Tiow - Training Time 2,5, 10 Mbps
- Transmitted Data
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Fig. 2. Effect of the Gradient Variance Threshold # on SCALP Transmitted
Data and Model Final Accuracy.

Both parameters are selected based on empirical convergence
behavior and prior studies [17], [18]. Their influence on training
dynamics and communication overhead is quantified, with the
evaluation scenarios, corresponding metrics, and parameter
ranges summarized in Table II.

Figure 2 analyzes the impact of the gradient variance
threshold & on SCALP’s communication efficiency and model
accuracy. This parameter determines how each worker assesses
the statistical significance of its local gradient update. Specifi-
cally, when the variance of the gradient vector falls below 6, the
update is considered to have low impact and is subject to more
aggressive filtering. As 6 increases, the condition ag < 0,
defined in (1), is satisfied more frequently, resulting in a
larger fraction of updates being classified as insignificant and
filtered locally instead of being transmitted. This behavior
leads to a significant reduction in communication volume, with
over 20% difference observed between the lowest and highest
threshold values. However, this gain in bandwidth efficiency
involves a trade-off. At the most aggressive setting (§ = 1072),
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Fig. 3. Effect of the Low-Bandwidth Threshold 7Tj,y on SCALP’s Training
Time to Reach 90% Accuracy and Transmitted Data.

compression removes gradient components that, despite their
low variance, still contribute to model convergence. This effect
results in a modest decrease in final accuracy.

Figure 3 illustrates the effect of the low-bandwidth thresh-
old Tjoyw on SCALP’s training time to reach 90% accuracy and
the total data transmitted. This threshold does not represent
the actual measured bandwidth, but rather serves as a decision
criterion used by each worker to determine whether the current
uplink condition should be treated as congested. When the
observed bandwidth B,, falls below this threshold, compression
is triggered. Lower threshold values, such as 2 Mbps, imply
that only severely degraded links activate compression, leading
to more frequent full-gradient transmissions and higher overall
data exchange. In contrast, higher thresholds, such as 10 Mbps,
cause workers to classify even moderately loaded links as
congested. Consequently, compression is applied more aggres-
sively, resulting in a substantial reduction in transmitted data.
However, this increased compression sensitivity can impact
training dynamics: excessive filtering may discard semantically
relevant updates, resulting in delayed convergence. This effect
is reflected in a slight increase in training time at the highest
threshold setting.

These results indicate that § and T,y provide tunable control
over SCALP’s behavior. Lower values prioritize fidelity by
limiting compression, whereas higher values enhance commu-
nication efficiency. In both cases, mid-range configurations,
specifically a variance threshold of § = 1073 and a low-
bandwidth threshold of 7., = 5 Mbps, are used as robust and
empirically validated default values. Therefore, these values
are adopted in the subsequent evaluations to ensure a balanced
trade-off between accuracy and communication cost.

The final stage of the evaluation compares SCALP against
two representative compression strategies. The first is a
bandwidth-aware method [27] that filters gradients based
exclusively on observed uplink capacity. The second is DGC [7],
which retains only gradient components exceeding a global
magnitude threshold. These baselines provide a contrast to
SCALP’s dual-adaptive approach, which combines gradient
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Fig. 4. Performance comparison between SCALP, Bandwidth-Aware Filter-
ing [27], and DGC [7]. The top subplot reports the training time to reach 90%
accuracy, the middle subplot shows the total data transmitted, and the bottom
subplot presents the final model accuracy. All metrics are measured using a
CNN-LSTM model trained on the CMAPSS dataset [25].

variance and bandwidth measurements to make more informed
compression decisions.

Figure 4 reports the comparative performance of SCALP
against the baseline methods. The top subplot shows the
training time required to reach the target accuracy of 90%.
All three methods achieve comparable convergence speeds,
with SCALP completing training in 4579.7 seconds, which is
0.38% slower than DGC and 0.31% faster than the bandwidth-
aware approach. These results indicate that SCALP’s compres-
sion dynamics do not introduce delays in convergence. The
middle subplot illustrates the total data volume exchanged
during training. SCALP achieves the highest communication
efficiency, reducing data transmission by 10.2% compared
to the bandwidth-aware method and by 1.8% relative to
DGC. These savings reflect the advantage of integrating both
variance-driven filtering and bandwidth awareness. The bottom
subplot presents the final model accuracy. SCALP achieves
98.62%, outperforming DGC by 1.19% and the bandwidth-
aware strategy by 2.15%. This improvement underscores the
limitations of compression strategies that rely exclusively on
gradient magnitude or network state, as they may discard
updates that are statistically relevant to model convergence.



IV. CONCLUSIONS

This paper presented SCALP, a lightweight, network-aware
gradient compression mechanism for Federated Learning that
combines adaptive filtering with stateless signaling via the
ECN field. By allowing each client to adjust its compression
level based on local gradient variance and uplink bandwidth
conditions, SCALP reduces communication overhead with-
out compromising convergence accuracy. Evaluations on the
CMAPSS dataset using CNN and CNN-LSTM models show
that SCALP consistently outperforms baseline strategies in
both efficiency and model quality. Its dual-adaptive design,
which integrates statistical relevance and link quality, proves
effective in maintaining performance under constrained network
conditions. These results establish SCALP as a practical and
robust solution for communication-efficient FL in dynamic and
heterogeneous edge environments.
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