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Abstract: Active magnetic bearings are complex mechatronic systems that consist of mechanical, 11 
electrical, and software parts, unlike classical rolling bearings. Given the complexity of this type of 12 
system, fault detection is a critical process. This paper presents a new and easy way to detect faults 13 
based on the use of a fault dictionary and Machine Learning. In particular, the dictionary was built 14 
starting from fault signatures consisting of images obtained from the signals available in the system. 15 
Subsequently, a convolutional neural network was trained to recognize such fault signature images. 16 
This work concentrates on recognizing the most frequent electrical faults that typically affect posi- 17 
tion sensors and actuators.  This new method permits, in a computationally convenient way, that 18 
can be implemented in real time, to determine which component has failed and what kind of failure 19 
has occurred. Therefore, this fault identification system allows for determining, in the event of a 20 
fault, which countermeasure to adopt in order to enhance the reliability of the system. The perfor- 21 
mance of the proposed method is assessed by means of a case study concerning a real turbomachine 22 
supported by two active magnetic bearings for the oil and gas field. Seventeen fault classes have 23 
been considered and the neural network fault classifier reached an accuracy of 93% on the test da- 24 
taset. 25 

Keywords: Active Magnetic Bearing, AMB, Fault analysis, Convolutional Neural Networks, Fault 26 
dictionary, Rotordynamics. 27 

1. Introduction 28 
Active Magnetic Bearings (AMBs) are being increasingly used across a broad range 29 

of rotodynamic applications, ranging from small turbo molecular pumps for medical ap- 30 
plications to large compressors in the megawatt range for the oil and gas field. Compared 31 
to classic contact bearings, AMBs offer several significant advantages. AMBs achieve a 32 
significant reduction in friction and in the associated wear by levitating the rotor relative 33 
to the stator parts. The elimination of friction also enables higher rotation speeds, greater 34 
system efficiency, and eliminates the need for cumbersome lubrication systems that are 35 
typically required for traditional bearings. Due to the inherently unstable nature of AMBs, 36 
a stabilizing feedback control is needed for proper functioning. Therefore, an AMB is a 37 
complex mechatronic system comprising various components, including the controller, 38 
position sensors and actuators. The synthesis of the controller is a critical aspect of AMB 39 
systems. Various controller structures and design processes can be used, as reviewed for 40 
example in [1] or in [2]. Among these, augmented PIDs are probably the most widespread 41 
choice in industry because of their versatility, accuracy, efficiency, and cost-effectiveness. 42 
All the controllers of AMB systems rely on precise measurements of the rotor position, for 43 
which a common choice is to use inductive or eddy current sensors, even if recently self- 44 
sensing sensors and optical sensors have also been introduced [3]. The effect of the choice 45 
of sensors is discussed for example here [4]. About the other components, PWM is 46 
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commonly used for driving the electromagnets that make the rotor levitate. The behavior 47 
of all the components in the loop contributes to determining the stiffness and damping of 48 
the bearings, that are directly related to the stability and performance of the closed-loop 49 
system. To improve the robustness of such a complex system, a fault detection and diag- 50 
nostic system is advisable to ensure safe and reliable operation. As a result, several studies 51 
have developed methods to detect failures associated with the rotor or with the electrical 52 
and electronic components, as for example in [6] and in [7]. Failure detection in AMB sys- 53 
tem enables also to adopt safety strategies exploiting their closed loop architecture that 54 
can adapt to cope with the detected fault. In fact, due to their active nature, controllers can 55 
dynamically adjust the bearings behavior in real-time. Exploiting the power of internal 56 
information processing, an AMB system can enhance its survival chances and reliability.  57 
For this reason, fault tolerant AMB systems have been developed that can manage mal- 58 
functions, for example, using a reconfigurable control, as described in [6] or in [7]. 59 
For fault diagnosis systems, usually, the actual system behavior is compared to the ex- 60 
pected one in nominal condition to identify a faulty system condition.  Observers of the 61 
system, as described in [5], are typically used.  62 
Another common approach for identifying faults is the simulation-before-test technique. 63 
It involves constructing a fault dictionary from simulations of a particular plant, which 64 
collects examples of fault signatures that can be used to train a classifier capable of recog- 65 
nizing different faults, as described for example in [8].  66 
Traditionally, fault diagnosis has been based on analyzing signals in the time and fre- 67 
quency domains. However, this paper proposes an approach that exploits a fault diction- 68 
ary made by images of signals in time-domain to train a simple convolutional neural net- 69 
work that has the goal to recognize the AMB system faulty conditions. Taking the availa- 70 
ble electrical signals as sources, generalized orbits are built and converted into discrete 2D 71 
images that are used to fill the fault dictionary, with a technique that generalizes and ex- 72 
tends the approach proposed by  Xunshi, who used the sensors signals to build orbits to 73 
detect mechanical failures [9]. A similar method is proposed by Jing et al., who in their 74 
paper proposed a feature-based learning and fault diagnosis method for gearbox condi- 75 
tion monitoring [10]. The fault features were obtained by using a simulation tool, devel- 76 
oped by some of the authors [11], capable of automatically building the entire fault dic- 77 
tionary, once the fault conditions are modeled. In the context of this work, only single 78 
electrical parametric faults have been considered for simplicity, but the fault classes can 79 
be extended including e.g. also mechanical faults as in [12]. 80 
To exploit the knowledge stored in the fault dictionary, this paper proposes a classifier 81 
based on a convolutional neural network (CNN), well-suited for image classification, [13, 82 
14]  trained with the fault signature examples. In the case of system fault, the trained con- 83 
volutional neural network has the aim of identifying the faulty component and the type 84 
of fault that has occurred.  85 
Compared to other methods proposed in the literature that rely on analyzing signals in 86 
the time domain, the proposed approach, losing the time dependence, offers a novel so- 87 
lution to detect and locate faults, making full use of the potential of smart systems like 88 
AMBs. Moreover, with the help of computationally efficient image processing and simple 89 
neural networks, this automatic online diagnostic system can be developed without ex- 90 
cessive computational cost. Such systems could be exploited in advanced prognostic 91 
maintenance systems to enhance balance of plant capabilities over time as described in 92 
[15-17]. 93 

The paper structure is the following: Section 2 describes the AMB modeling adopted to 94 
build a simulation tool. Section 3 presents the developed fault dictionary by which a clas- 95 
sifier can be trained. Section 4 describes the proposed model of image classifier. Section 5 96 
presents a case study. Section 6 shows the case study results; conclusion follows.  97 
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2. System Modeling 100 

3.1. AMB Background 101 

An AMB, applied to a turbomachine, has the purpose of making the rotor levitate with 102 
respect to the stator. Normally, a turbomachine is equipped with at least five AMB control 103 
axes: four for the rotor radial dynamics (two per each radial bearing) and one for the axial 104 
one. Only the radial dynamics of the system has been considered since radial rotor dy- 105 
namics are normally more complex than axial ones and for this reason has been chosen as 106 
object of this work. An AMB is composed of two opposed electromagnets that attract a 107 
ferromagnetic object, in this case the rotor, and try to maintain it in the center of the air 108 
gap. A radial bearing is composed of two AMB control axes that are able to attract the 109 
rotor in any direction in a plane. Figure 1 describes a classical cross section of a radial 110 
AMB bearing in a heteropolar configuration, as described in [2].  111 

 112 
Figure 1. A classical cross section of a radial AMB in a heteropolar configuration. 113 

The two opposed electromagnets are driven with a differential control current. Consider- 114 
ing them, along an axis 𝑧, a linear relation can be found [18]:  115 

                           𝐹! = 𝑘"𝑖! − 𝑘#𝑍  (1) 

where 𝐹! is the magnetic force exerted on the rotor along the axis z,  𝑍 is the displacement 116 
along the same axis with respect to the nominal working conditions and the parameters 117 
𝑘" and 𝑘# respectively called electrical gain and negative stiffness depend on the geomet- 118 
rical parameters of the bearings and on the nominal operating conditions, that are the 119 
nominal air gap 𝑠$ and the bias current 𝑖$. Equation (1) is the more accurate the more the 120 
working conditions are close to the nominal ones. Because of the negative stiffness 𝑘#, 121 
AMBs are inherently unstable. Hence, they are always inserted in a stabilizing closed loop 122 
system. Figure 2 shows a block diagram of an AMB system closed loop. This system com- 123 
prises amplifiers for driving the magnetic bearings, position sensors comprising the re- 124 
lated conditioning electronics, and a controller. The position sensors constantly monitor 125 
the rotor position, while the controller utilizes these signals to calculate the necessary con- 126 
trol signals for the actuators, which drive the magnetic bearings. The goal of the closed 127 
loop system is to maintain the rotor in a levitated state at the center of the air gap by 128 
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determining the appropriate currents 𝚤 ̅for each AMB, where 𝚤 ̅is the control currents vec- 129 
tor. 130 

 131 
Figure 2. Block diagram of an AMB closed loop system. 132 

3.1. AMB Closed Loop System Modeling  133 
A state-space formulation was developed for each component to model the dynamics of 134 
the closed-loop system. The rotor radial state-space model was specifically constructed 135 
using a finite element method (FEM). This involved discretizing the rotor into N nodes 136 
along its geometric rotational axis. A Timoshenko modeling was utilized for the shafts, 137 
with a detailed description of the formulation available in [19] or [20]. The resulting equa- 138 
tion that described the rotor dynamics is the following: 139 

                                                         𝑀𝑞-̈ + 0𝐶 + 𝛺𝐶%3𝑞-̇ + (𝐾 − 𝐾#)𝑞- = 𝐹-&'( + 𝐹-)*+   

                                                                                           𝐹-&'( = 𝐾"𝚤 ̅   
(2) 

where 𝑀 is the mass matrix, 𝐶 is the damping matrix,  𝐶% is the gyroscopic matrix, 𝐾 is the 140 
stiffness matrix, 𝛺 is the rotor rotational speed, 𝐹-)*+ are the external forces acting on the 141 
rotor, 𝐹-&'( are the AMB control forces, 𝑞-  is the vector that represents the position of every 142 
node of the rotor, 𝚤 ̅the vector of the control currents and, 𝐾"  and 𝐾# respectively the ma- 143 
trix of current gains and the matrix of negative stiffnesses. Furthermore, a model order 144 
reduction technique was used on (2) to reduce the complexity of the system. In particular, 145 
modal truncation, described for example in [21], was used to eliminate all the rotor modes 146 
that are at a frequency above the range of interest for this type of application. Starting 147 
from (2), the rotor state space equation can be found: 148 

                                                                                              𝑋-̇, = 𝐴,𝑋-, +	𝐵,(𝐹-&'( + 𝐹-)*+) 

                                                                                      𝑞- = 𝐶,𝑋-,  
(3) 

where  149 

                                                       𝑋-, = <
𝑞-
𝑞-̇=,   𝐴, = >

[0] 𝐼
−𝑀-.(𝐾 − 𝐾#) −𝑀-.0𝐶 + Ω𝐶%3

D , 

             B/ = < [0]
𝑀-.= ,   𝐶, = [𝐼 [0]]. 

Moreover, linear state-space models were used to describe the other components of the 150 
AMB system, considering their unique characteristics and specifications. Combining the 151 
sensors, controller and actuators models, a second state-space system was found: 152 
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                                                                                           𝑋-̇( = 𝐴(𝑋-( + 𝐵(𝑞-	

				𝐹-&'( = 𝐶(𝑋-( 
(4) 

where 𝑋-( is the state and (𝐴(, 𝐵(, 𝐶() are the matrices of the second state space model. 153 
Combining the equations (4) and (5), the state space model of the whole closed loop sys- 154 
tem was found: 155 

                                                                                   0
0+
<𝑋
-,
𝑋-(
= = < 𝐴, 𝐵,𝐶(

𝐵(𝐶, 𝐴(
= <𝑋
-,
𝑋-(
= + <

𝐵,
[0]= 𝐹

-)*+	 (5) 

The modeling of the whole system allows for simulating the dynamic behavior of the 156 
whole system. The main contributions of the term 𝐹-)*+ are the unbalance forces. Unbal- 157 
ance forces are synchronous forces with the speed of the rotor that are induced by the 158 
presence of unbalanced masses with respect to the axis of rotation of the rotor. The unbal- 159 
ance masses are due to inevitable manufacturing errors or rotor wear, and they are char- 160 
acteristic of a particular turbomachine. For a given axis 𝑥, at a fixed rotor speed Ω the 161 
unbalance force assumes the form: 162 

                                                                                                           𝐹12! = 𝛺3𝑈cos	(𝛺𝑡 + 𝜙),	 (6) 

where ϕ is the phase of the unbalance respect other axis and U is the unbalance magnitude 163 
in 𝑘𝑔𝑚. In order to exactly reproduce the dynamic model, the machine is experimental 164 
identified to accurately assess the unbalance and to fine tune the state-space model (3). 165 
Some identification methods for AMB systems can be found in [22] or in [23].   166 

3. Fault Dictionary 167 

Due to the mechatronic structure of an Active Magnetic Bearing (AMB) system, failures 168 
can manifest in various forms, they can be software, electrical, or mechanical. These faults 169 
can result in the high-speed rotor making contact with its housing, potentially compro- 170 
mising the safety of the entire plant. Although touch-down bearings are designed to pre- 171 
vent direct contact between the rotor and housing, such an event must be avoided at all 172 
costs. To address the diverse range of faults that can arise in AMB systems, several 173 
measures can be taken, including redundancies, quality control, individual measures, and 174 
various control strategies. Active fault diagnostics and corrections can also be employed. 175 
Guidelines for designing a reliable system are provided in ISO 14839 [24] and API 617 [25] 176 
for turbomachinery on AMBs in the oil and gas field. A three-stage process for dealing 177 
with faults is described in [26], which involves determining the timing of the fault, iden- 178 
tifying the faulty component, and identifying the type of fault. Given the complexity of 179 
the system, there are numerous reasons why malfunctions can occur, which can have dif- 180 
ferent degrees of impact on system performance. [27] summarizes the main causes of mal- 181 
functions, their occurrence, and severity. This work takes into consideration the most com- 182 
mon electrical soft faults, which can be modeled in three different ways: multiplicative, 183 
bias, and noise, as discussed in [28]. More specifically, this work considered the most fre- 184 
quent scenario, i.e., that of a single fault at a time. Figure 3 provides a summary of these 185 
faults. 186 
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Figure 3. Resume of common electrical faults of AMB system 188 

Steady-state signals, obtained from sensors and control systems are exploited to build im- 189 
ages that serve as fault signatures. In particular, in this work the available considered sig- 190 
nals were position signals from sensors, control signals from the controller, and current 191 
signals from the actuators, that are generally easily obtainable in an AMB system.  Figure 192 
4 summarizes the electrical signals that were chosen to build the dictionary. Since all sig- 193 
nals exhibit periodic behavior, during normal machine operations at a constant fixed ro- 194 
tational speed, it is possible to create groups of images by representing the signals related 195 
to one of the two orthogonal control axes as functions of those related to the other axis, 196 
disregarding time as an independent variable and obtaining generalized orbits of the sig- 197 
nals related to each bearing, as described in Figure 4. 198 

The fault features were obtained by using a simulation tool capable of automatically build- 199 
ing the entire fault dictionary once the fault conditions are modeled. The simulation tool 200 
is implemented in the Matlab-Simulink environment and allows for performing Monte 201 
Carlo simulations, by varying a selected set of component parameters using specific prob- 202 
ability distributions or by adding noisy signals. The developed simulation tool was vali- 203 
dated by comparing the results obtained with a commercial software (MADYN 2000). 204 

Reference images, relative to non-faulty condition, are formed by simulating machine op- 205 
erations at a constant rotor speed and collecting signals while varying the component pa- 206 
rameters within their tolerance ranges and accounting for normal levels of noise. The dic- 207 
tionary is completed by simulating the different faults that belong to the previously intro- 208 
duced fault classes. In detail, examples of each single soft fault signatures in the fault clas- 209 
ses listed above, are obtained by randomly varying all the electrical parameters (gains, 210 
sensitivity and biases) within the tolerance ranges, but for the faulty component which 211 
varies outside this range, or by injecting noise with an abnormal standard deviation. 212 

 The variations of the component parameters in the tolerance ranges determine regions of 213 
confidence in the reference images relative to non-faulty condition where the generalized 214 
orbits should remain under fault-free conditions. If the orbits go beyond these regions, a 215 
fault has occurred. The built fault dictionary consists of images containing the deformed 216 
orbits with respect to the reference ones, given by simulating the different faults for the 217 
particular plant.  218 
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Figure 4. Summary of electrical signals that were chosen to build the dictionary. 220 

Once the simulations are done, the feature images can be built. The time signals were 221 
normalized, and the orbits triplets were represented by images with a fixed resolution. 222 
Black and white images were generated through the Matplotlib library in Python, one for 223 
each orbit typology, one for the control signals, one for the position signals and the last 224 
for current signals. In the end, these images were concatenated into a unique RGB image, 225 
so that each RGB channel concerns only one orbit typology. In other words, for every tri- 226 
plet of images, related to a particular scenario, a unique RGB color was associated at each 227 
orbit typology, the red for the position signals, the blue for control signals and the green 228 
for current signals. Directly using images from available signals to train the classifier im- 229 
proves the ability of the system to understand the AMB system state, which offers a wider 230 
view and enhances the precision of information captured. 231 

4. Classification Algorithm: Convolutional Neural Network 232 

The proposed classifier exploits a Convolutional Neural Network (CNN), a neural net- 233 
work specialized for processing data that has a known, grid-like topology [29]. Examples 234 
include time-series data, which can be thought of as a 1D grid, and image data, which are 235 
2D grid of pixels. LeCun et al [30] first applied the backpropagation algorithm to CNNs, 236 
with LeNet, a network developed to recognize handwritten digits. AlexNet [31] became 237 
the first modern deep convolutional neural network, representing a breakthrough in im- 238 
age classification.  239 

A CNN is an architecture composed of multiple layers that collaborate to process and 240 
extract meaningful features from input data, each of them acting a different function in 241 
the network operations. 242 
Convolutional layers consist of multiple filters, or kernels, that slide over the input data 243 
and perform convolutions. Each filter extracts specific features by detecting patterns and 244 
spatial information. The output of each filter is a feature map. An activation function, 245 
which introduces non-linearity into the network, is usually applied after each convolu- 246 
tional layer. Common choices include Rectified Linear Unit (ReLU), or variants such as 247 
Leaky ReLU or Parametric ReLU. 248 
Pooling layers are frequently used after the convolutional layers to reduce the dimension- 249 
ality of the feature maps and spatial dimensions. This down-sampling process helps 250 
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summarize and extract the most important information from the feature maps while re- 251 
ducing the network's computational complexity. In other words, max pooling is a com- 252 
monly used technique in which the maximum value within a pooling window is selected 253 
as the representative value for that region. 254 
After the convolutional and pooling layers, the feature maps are flattened into a one-di- 255 
mensional vector. This vector is then fed into fully connected layers, also called dense 256 
layers, which are responsible for making predictions or classifications based on the ex- 257 
tracted features. Like convolutional layers, activation functions are applied in the fully 258 
connected layer to introduce non-linearity. 259 
Finally, the last layer of CNNs is the output layer, which computes the network predic- 260 
tions. This time, the activation function used depends on the type of problem being solved. 261 
For classification tasks, as for this work, Softmax activation is commonly used to generate 262 
a probability distribution over the classes [32].  263 
A loss function is used to measure the discrepancy between the predicted outputs and the 264 
ground truth labels. The choice of loss function depends on the problem type, such as 265 
categorical cross-entropy for multi-class classification, as in the proposed model [33]. 266 
During training, the parameters of the CNN are adjusted to minimize the loss function 267 
using optimization algorithms like stochastic gradient descent (SGD) or its variants, such 268 
as Adam Optimizer [34]. This process, known as backpropagation, updates the weights 269 
and biases of the network to improve its performance. The structure of a CNN, depicted 270 
in Figure 5, is very complex; however, many modern machine learning frameworks, like 271 
PyTorch, implement the above-described CNN operation. 272 

 273 
Figure 5. Schematic structure of CNN. 274 

4.1 Proposed model 275 

In this work, the CNN classifier has the final objective of recognizing 17 fault classes, 276 
among which 16 are fault classes and 1 is the nominal class related to the normal operation 277 
condition. These classes are summarized in Figure 6 and refer to Figure 3.  278 
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Figure 6. Summary of the classes to be classified. 280 

The proposed CNN model consists of a series of alternately stacked convolutional, pool- 281 
ing and fully connected layers, as shown in Figure 7.  282 

It employs convolutional layers to extract features, max pooling to down-sample the fea- 283 
ture maps, and fully connected layers to map the extracted features to the output classes. 284 

The first layer was a convolutional 2D, which has the images of orbit triplets as input 285 
channels while the output channels were the 17 classes described in Table 1. In this way, 286 
the layer was able to expand the information of the provided data. With the same purpose, 287 
a second convolutional layer was implemented. Then, a max pooling was computed, halv- 288 
ing the dimensions of the images both for considering the expanded information and for 289 
preventing the gradient explosion. At this point, another convolutional 2D layer increased 290 
the dimension again, from 16 to 36 followed by another max pooling, for the same reasons 291 
explained above.  292 

Subsequently, a batch normalization layer was applied to the extracted features in the 293 
previous layers. This layer allows for using high learning rates and is quite unaffected by 294 
initialization. Moreover, it eliminates the need for dropout since it performs a regulariza- 295 
tion on the parameters, as explained in [35]. 296 

Afterwards, two additional convolutional layers were introduced. Unlike the preceding 297 
layers, these new layers aimed to combine or "zip" the output from the previous layer, 298 
thereby extracting the most significant features. This process helps to enhance the repre- 299 
sentation of the data by capturing more complex patterns and relationships. 300 

The convolutional part of the network was concluded with a final max pooling operation. 301 
This step was followed by the transition to a fully connected layer. To prepare the data for 302 
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this transition, the three-dimensional tensor resulting from the previous layers was flat- 303 
tened into a one-dimensional vector. Subsequently, three linear layers were trained in the 304 
network. Each of these layers was responsible for transforming the data and adjusting its 305 
dimensions to align with the output classes. In this case, the output dimension of each 306 
linear layer was rounded off to 17, which matches the number of classes in the classifica- 307 
tion task. 308 

In the proposed model, each convolutional layer has a kernel dimension of 3x3 and a step 309 
dimension of 1x1, while the max pooling layers have a step dimension of 2x2. At least, 310 
each convolutional and fully connected layer, except the last one, was adhered with a 311 
ReLu activation function. Adam optimizer was used, which is computationally efficient, 312 
has low memory requirements, is invariant to diagonal rescaling of gradients, and is well 313 
suited to problems with large data and/or parameters [34]. The architecture was imple- 314 
mented using the PyTorch libraries.  315 

 316 
Figure 7. The proposed model structure. 317 

5. Case Study 318 

As a case study to assess the performance of the proposed diagnosis system an AMB sup- 319 
ported system was considered. The case study is a real medium-size compressor sup- 320 
ported by AMBs for the oil and gas field. Figure 8 illustrates the finite element model of 321 
the rotor under investigation with a mass of about 810 kg and a length of about 1.80 me- 322 
ters. Regarding the electrical part, the controller structure was an augmented PID. It has 323 
a decentralized structure, that divides the system into control axes and every control axis 324 
is controlled independently. For what concerns the other components, the system com- 325 
prises switching pulse width modulation (PWM) amplifiers with heteropolar AMB actu- 326 
ators and inductive position sensors with a band of 4 kHz. 327 

 328 
Figure 8. This image shows the finite element model of the rotor, where the red triangles are the 329 
bearings, the yellow elements are the disks, and the blue elements are the sensors. 330 

Under nominal conditions, the system features a constant rotor rotation speed of 7800 rpm 331 
and an unbalance of	2.10 × 10-4	𝑘𝑔 ×𝑚 positioned at the center of mass of the rotor. The 332 
fault free condition is given by variations of the sensor sensitivities within a 2% tolerance 333 
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of sensor, bias below 1 µm, and in the presence of a Gaussian white noise with a standard 334 
deviation of 1 µm. As for the actuators, a 2% tolerance of the DC gain is taken into consid- 335 
eration. Figure 9 displays an example of nominal condition orbits related to the fault-free 336 
signatures for the two radial bearings of the rotor.  337 

   338 
Figure 9. This image shows an example of nominal condition orbits. On the left the sensor output, 339 
in the center the controller output and on the right the actuator output are reported. 340 

The faulty conditions that were taken into account to form the classes of the fault diction- 341 
ary were computed through Monte Carlo analysis using specific parameter distribution. 342 
In particular, for each actuator multiplicative fault, the faulty actuator gain was chosen as 343 
a uniformly distributed random number out of the tolerance range centered in the nomi- 344 
nal value in an interval ±50% the nominal value. Similarly, for each sensor multiplicative 345 
fault, the faulty sensor gain was chosen as a uniformly distributed random number out of 346 
the tolerance range centered in the nominal value in an interval ±50% of the nominal value. 347 
Instead, for each sensor noise fault, the faulty sensor is subjected to a gaussian additive 348 
noise with a standard deviation up to five times the nominal level of noise. Finally, for 349 
each sensor bias fault, the faulty sensor has random bias amplitude larger up to five times 350 
the nominal level of bias. Figure 10 shows an example of how orbits change shape when 351 
a specific fault occurs with respect to the orbits related to the nominal conditions reported 352 
for example in Figure 9.  353 

The dataset used in the case study consists of 37600 RGB images obtained from different 354 
simulations, as described above in Section 3. More specifically, each image has a size of 355 
3×224×224, where 3 represents the RGB channels and 224 x 224 is the number of pixels 356 
used for each image. Figure 11 gives an example of the used RGB images. The dataset is 357 
composed of 5600 examples of the fault free condition and 2000 examples of all the other 358 
16 fault classes.  359 

  360 

Figure 10. Example of signals orbits related to a sensor multiplicative fault, in particular, an AMB-1 361 
x-axis multiplicative fault of -50% with respect to the nominal value. 362 

Before training, data were pre-processed with aim of enhancing the model performance 363 
in terms of accuracy while also reducing noise interference. The dataset was divided into 364 
a training set, which includes 90% of the examples, and a test and a validation set, each 365 
which collects 5 % of the remaining examples.  366 
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Figure 11. The RGB images used for training. In the right and central panel are shown, respectively, 367 
actuator and sensor gain fault. In the panel of left, nominal condition is shown. 368 

 369 

6. Results and Discussion 370 

The model was trained using the pre-processed training set for a total of 1000 epochs. 371 
Using the test set, the proposed CNN was validated, in fact, the reached test set accuracy 372 
was of about 93 %, while the training set accuracy reached was about 95 %. These results 373 
are presented in Figure 12, with the test set accuracy depicted in orange and the training 374 
set performance in pink. 375 

Figure 13 shows the test and accuracy ratio, it represents the ratio between the accuracy 376 
of train and test reported in Figure 12. The descending trend observed in this plot suggests 377 
that the CNN's estimated parameters are not affected by overfitting. This indicates that 378 
the model has achieved a good level of generalization, meaning it can effectively general- 379 
ize its learned patterns and make accurate predictions on unseen data. 380 
Additionally, in Figure 14, the obtained confusion matrix is reported, and Table 1 presents 381 
the codebook of the labels. The horizontal axis of the matrix represents the actual faults, 382 
while the vertical axis represents the predicted faults. The diagonal elements show the 383 
percentage of correct predictions, the values above the diagonal indicate false positives, 384 
while the lower ones represent false negatives. 385 
As shown by Figure 14, the confusion matrix is quite diagonal even though the lowest 386 
values are about 70 %.  387 
It was found that the most part of misclassifications are related to soft faults related to 388 
small parametric deviations (with respect to the fault-free condition). 389 
The achieved accuracy is really satisfactory for soft fault recognition taking into account 390 
also small parametric variations. This fact was due to two reasons. The first is that the 391 
regions of parameters variation related to faults border on the tolerance regions. The sec- 392 
ond reason is that the image resolution is limited. These facts lead some classes not to be 393 
recognized correctly, more precisely, the faulty class that are related to orbits that differ 394 
of a small amount with respect the reference ones in presence of small variation of a pa- 395 
rameter out of the tolerance.  This is a problem intrinsic in the definition of soft fault itself. 396 
No net borders between the faulty and the fault free condition exist, but in any case, pos- 397 
itive or negative false related to these borderline situations have no severe consequences.   398 

{IMG} 399 

Figure 12. On the left plot the training accuracy for each epoch is shown, on the right the testing 400 
accuracy for each epoch is reported. 401 
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 402 
Figure 13. On the left the training and testing accuracy ratio plot is shown and on the right the 403 
training loss plot is reported.  404 

 405 
Figure 14. Obtained confusion matrix. 406 

 407 

ID Compo-
nent Kind of fault  ID Compo-

nent Kind of fault 

0 Actuator 1 Gain Fault  9 Sensor 2 Gain Fault 
1 Actuator 2 Gain Fault  10 Sensor 2 Noise Fault 
2 Actuator 3 Gain Fault  11 Sensor 3 Noise Fault 
3 Actuator 4 Gain Fault  12 Sensor 3 Gain Fault 

4 - Nominal Condi-
tion 

 13 Sensor 3 Noise Fault 

5 Sensor 1 Bias Fault  14 Sensor 4 Bias Fault 
6 Sensor 1 Gain Fault  15 Sensor 4 Gain Fault 
7 Sensor 1 Noise Fault  16 Sensor 4 Noise Fault 
8 Sensor 2 Bias Fault     

Table 1. Codebook of the confusion matrix. 408 
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 409 

6. Conclusion 410 
Active Magnetic Bearings are gaining popularity in a range of rotating machinery appli- 411 
cations due to their high performance and the elimination of cumbersome lubrication sys- 412 
tems. On the other hand, they require a complex closed-loop mechatronic system to oper- 413 
ate. Therefore, to ensure safe and reliable operation, fault detection and diagnostic sys- 414 
tems are necessary. This proposed novel approach for fault diagnosis utilizes images of 415 
electrical signals available in an AMB system to train a classifier: a simple convolutional 416 
neural network that was trained to detect the most common soft electrical faults. Remark- 417 
ably, the proposed classifier exhibits high accuracy and generalizability without requiring 418 
an extensive amount of data. This approach can be easily extended to other fault typolo- 419 
gies and to other AMB-supported systems. 420 
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