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Abstract— Due to the complex structure of turbomachinery 
systems, the process of fault detection assumes paramount 
importance, in particular rotor unbalance faults are 
particularly risky and common. This research paper introduces 
an innovative and straightforward approach to locate rotor 
unbalance faults for turbomachinery supported by Active 
magnetic bearings (AMB) exploiting the AMB sensors and 
utilizing Deep Learning techniques (1D Convolutional Neural 
Networks). The main goal of this study is to develop a fault 
dictionary, built using fault signatures derived from position 
sensor signals, and a classifier specialized in locating the 
unbalance faults in turbomachinery supported by AMBs, that 
generally occur in the turbomachine impellers. These are the 
most prevalent unbalance faults that affect turbomachinery 
systems and that commonly impact the performance of AMB 
systems. The effectiveness of this approach is demonstrated 
through a case study involving an expander-compressor 
supported by two active magnetic bearings in the oil and gas 
field. Five distinct fault classes are considered, and the neural 
network fault classifier achieves an impressive accuracy rate of 
98% on the test dataset. 
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I. INTRODUCTION  
Active Magnetic Bearings (AMBs) are becoming 

increasingly important in a wide range of rotating machinery 
applications. These applications can vary from small turbo 
molecular pumps used in medicine to large megawatt-scale 
compressors used in the oil and gas industry. Unlike 
traditional contact bearings, AMBs offer significant 
advantages. One key benefit is their ability to eliminate 
friction and wear by levitating the rotor with respect to the 
stator components. This enables higher rotational speeds, 
improves system efficiency, and eliminates the need for 
complex lubrication systems typically found in traditional 
bearings. However, due to their inherently unstable nature, 
AMBs require a feedback control system to operate. This 
closed loop comprises different components, including 
controller, position sensors, amplifiers and actuators. A 
detailed description of the structure of AMB systems can be 
find in [1]. The AMB system component choice determines 
the nominal stiffness and damping characteristics of the 
bearings. These properties establish the overall stability and 
performance of the closed-loop system. Beyond the already 
mentioned advantages, AMBs can be exploited for fault 
location and even for fault compensation. In fact, the sensors 
on board AMB systems allow for continuously monitoring the 
behavior of the rotor during operations and provide 
information useful for detecting faults, ensuring safe and 
reliable operation.  
 The early detection of failures in AMB systems offers the 
opportunity to employ safety strategies that leverage the 
closed-loop architecture to adapt the system and respond to 
the detected faults in real-time. The active nature of AMB 

controllers allows for dynamic adjustments to the bearing 
behavior, enhancing the system chances of survival exploiting 
an internal information processing. Consequently, fault 
tolerant AMB systems have been developed to effectively 
manage malfunctions, utilizing for example reconfigurable 
control strategies [2]. As a result, numerous research studies 
have focused on developing methods to identify failures 
associated with the rotor or the electrical and electronic 
components. 
 A common practice to identify faults involves the use of 
system observers that compare the system state with the 
expected one related to the normal operational condition to 
identify any anomalies. A different approach is the simulation-
before-test technique. This method involves creating a fault 
dictionary through simulations of a specific system [3], which 
accumulates instances of fault signatures, and these signatures 
serve as training data for a classifier capable of recognizing 
various faults, as elucidated in reference [4]. Traditionally, 
fault diagnosis has revolved around analyzing signals in the 
time and frequency domains. A similar methodology is put 
forth by Jing et al. in [5], who proposed a feature-based 
learning and fault diagnosis method for gearbox condition 
monitoring. 
 However, some advanced techniques exploit a fault 
dictionary composed of images generated from time-domain 
signals. These representations serve as the base for training 
convolutional neural networks (CNNs) specifically designed 
for the purpose of detecting and recognizing faulty conditions. 
This method applied to AMB systems was pioneered by Yan 
et al., who employed sensor signals to construct orbits for 
detecting mechanical failures, as outlined in reference [6].  
 This research focuses on detecting and locating unbalance 
faults in the impellers of a turbomachine supported by AMBs 
in operating condition, that is one of the most common 
situations that occurs in a turbomachine [7] using AMBs as an 
identification and diagnosis tool for the system. In the context 
of this work, only single unbalance faults have been 
considered for simplicity, but the fault classes can be 
extended. The proposed work introduces a novel approach 
which aims at locating impeller unbalance faults through the 
application of CNN by dividing the impeller into different 
circular sectors and assigning to each region a different class 
label. The approach is demonstrated in a specific case in this 
paper but is a general procedure which allows for enhancing 
the accuracy of unbalance location by increasing the number 
of circular sectors. This work should be considered as an 
extension of the authors’ work [4] which had the objective of 
identifying electrical faults in AMB systems. The new 
approach can be used together with the one previously 
developed. 
To construct the fault dictionary, the position sensor electrical 
signals are harnessed as sources to generate generalized orbits, 
which are then transformed into discrete black and white 
images. The properly trained CNN, known for its proficiency 



in image classification has the dual objective of identifying the 
defective impeller and precisely determining the location of 
the unbalance fault within said impeller. More specifically, the 
approach followed employed 1D CNNs, which exhibit great 
performance, as evidenced in [8], working with grid-like 
topological data. Furthermore, by employing computationally 
efficient image processing techniques, that is Adam 
optimization [9], in conjunction with efficient neural 
networks, it becomes feasible to construct an automatic online 
diagnostic system with minimal computational overhead.  
The paper structure is the following: Section II describes the 
fault dictionary building process. Section III describes the 
proposed model of classifier trained with the fault dictionary 
described in the previous section. Section IV presents a case 
study and the obtained results. Conclusion follows. 

II. FAULT DICTIONARY BUILDING 

A. System Modeling 
An AMB consists of a pair of opposing electromagnets, 

which exert attractive forces on a ferromagnetic object, in this 
case, the rotor. Their objective is to maintain the rotor in the 
center of the air gap. Typically, a turbomachine is equipped 
with no fewer than five AMBs, consisting of four dedicated 
to managing the radial dynamics of the rotor (two for each 
radial bearing) and one dedicated to controlling the axial 
dynamics. This study focuses exclusively on the radial 
dynamics of the system since radial rotor dynamics tend to be 
inherently more complex than its axial counterpart. 

Since AMBs are inherently unstable components, they are 
always inserted into a stabilizing closed-loop system. Fig. 1 
presents a block diagram illustrating the closed-loop 
configuration of an AMB system. This system includes 
amplifiers that drive in current the magnetic bearings, 
position sensors accompanied by their associated 
conditioning electronics, as well as a controller. 

The role of the position sensors is to continuously monitor 
the rotor position, providing real-time data. The controller 
leverages these position signals to compute the required 
control inputs for the actuators, which drive the magnetic 
bearings. The main objective of this closed-loop system is to 
consistently maintain the rotor in a suspended state at the 
center of the air gap. This is achieved by determining the 
optimal control currents to drive each individual AMB.  

To model the closed-loop AMB system, a state-space 
formulation was developed for each component. The rotor 
radial state-space model was specifically constructed using a 
finite element method (FEM) using Timoshenko modeling 
[10]. Additionally, linear state-space models were used to 
describe the electrical components of the AMB system, 
considering their unique characteristics and specifications. 
Combining the rotor state space and the electrical component 
models, a closed-loop system state space was found: 
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where 𝑋#  and (𝐴# , 𝐵# , 𝐶# )  represent the state and the 
matrices of the rotor model, 𝑋$ and (𝐴$, 𝐵$, 𝐶$) are the state 
and matrices of the second state space of the electrical models 
and 𝐹%&" the external forces acting on the system. Equation 

(1) allows for studying the performance and dynamic 
behavior of the AMB system model.  

 
Fig. 1.  Schematic of an AMB system structure. 

In high-speed turbomachine, the main contribution of the 
term 𝐹%&"  is the unbalance force. Unbalance forces are 
synchronous with the rotor speed and arise from the existence 
of unbalanced masses relative to the rotor axis of rotation. 
These unbalanced masses result from inherent manufacturing 
imperfections or arise from wear. When considering a fixed 
rotor speed Ω along a given axis x, an unbalance force is 
added to 𝐹%&", which takes the following expression: 

                                                                                                            
𝐹'(! = 𝛺)𝑈cos	(𝛺𝑡 + 𝜙)          (2) 

where ϕ is the phase of the unbalance with respect to other 
axis and U is the unbalance magnitude in 𝑘𝑔𝑚. To exactly 
reproduce the dynamic behavior of a real system, each 
machine is experimental identified to accurately assess the 
unbalance and to fine tune the state-space model (1), as for 
example accurately described in [11].    

B. Unbalance Fault 
Due to the complex mechatronics nature of AMB 

systems, failures can manifest in different ways, software, 
electrical, or mechanical, which can impact system 
performance differently. Lijesh et al. in [12] summarizes 
common malfunction causes, their occurrence, and severity. 
These faults can lead to high-speed rotor contact with the 
housing, exposing plant safety. To mitigate these risks, 
measures like redundancies, quality control, individual 
actions, and various control strategies are essential. Active 
fault diagnostics and corrections are also valuable. This work 
focuses on unbalance faults, whose action on the AMB 
closed-loop system can be modeled by (2). Even if the rotor 
is balanced in the manufacturing process, a residual 
unbalance always remains. Following an identification 
process this unbalance is measured and characterizes the 
particular turbomachine. During normal operation, thanks to 
AMB levitation, wear mainly occurs only on the impeller 
blades. Solid particle erosion is one of the main reasons 
causing the blades wear failure. Wang et al. in [13] analyzed 
the primary influencing factors on erosion such as the particle 
characteristics, environmental condition, and materials 
characteristics. Normally, the worn blades must be localized 
and repaired in an impeller. Every worn blade act as an 
unbalance fault that contributes to the vibrations of all the 
AMB closed-loop system.  
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This work aim is to localize the faulty impeller and the 
position of the faulty blade, considering a single fault at a 
time. More specifically, the localization is intended as the 
identification of the phase 𝜙 between the native unbalance 
(𝜙 = 0*) of the particular turbomachine and the faulty blade. 
To this aim, the impeller is divided into equal circular sectors 
and the aim of this work is to locate the sector that contains 
the faulty blade. Fig. 2 summarizes this idea. In this work, for 
demonstration purposes, only two circular sectors (𝛽+ and 𝛽)) 
per impeller were considered but the sector number can be 
arbitrarily increased if needed.  

 
Fig. 2.  Impeller sector division. 

C. Fault Dictionary  
Steady-state signals are exploited to construct images that 

serve as fault signatures, which act as input data to train a 
classifier. In this work, position signals from sensors that are 
always available in an AMB system are considered. 
Considering that all signals inherently present periodic 
behavior when the turbomachine operates at a fixed rotational 
speed, under steady conditions, it becomes feasible to 
organize these time signals into couples, by expressing the 
signal associated with one of the two orthogonal control axes 
of a radial AMB as a function of the other. In this process, 
time is no longer treated as an independent variable, and one 
generalized signal trajectory or orbit is generated for each 
radial bearing. In the presence of a fault these orbits change 
assuming specific and peculiar shapes corresponding to the 
related fault. Therefore, the collection of the different orbit 
signatures in the presence of different faults can be used as a 
fault dictionary. 

The fault orbits were derived through the utilization of a 
simulation tool capable of automatically building the entire 
fault dictionary modeling the fault conditions, as described in 
[3].  This simulation tool has been implemented within the 
Matlab-Simulink environment and enables the 
accomplishment of Monte Carlo simulations by using 
specific probability distributions to simulate the parameter 
variation ranges of the AMB system components or by 
adding noisy signals. The developed simulation tool was 
validated by comparing the results obtained with commercial 
software (MADYN 2000). To create reference orbits linked 
to the non-faulty condition, machine operations at a constant 
rotor speed were simulated while varying the component 
parameters within their specified tolerance ranges and 
accounting for normal level of noise. The dictionary is 
completed by collecting the orbit orbits linked to faulty 

conditions obtained simulating the different impellers 
unbalance faults by randomly varying different unbalance 
phases and magnitudes. Variations within component 
parameter tolerance ranges define confidence regions 
containing the reference orbits representing the fault-free 
condition. Any deviations of the orbits outside these regions 
signify a fault occurrence. The orbit signatures were 
represented by images with a fixed resolution. Black and 
white images were generated through the Matplotlib library 
in Python. Utilizing images directly from the available 
signals to train a classifier enhances the system capability to 
comprehend the AMB system state. This approach provides 
a broader perspective and improves the precision of captured 
information. 

III. CONVOLUTIONAL NEURAL NETWORKS 
The unbalance fault localization issue can be considered 

as a classification problem. A CNN-based classifier was 
developed to address the sensor orbit images. This model is 
tailored to handle grid-like topological data, encompassing a 
wide range of data types that can be conceptualized as either 
1D or 2D grids, including time-series data and images. 
AlexNet, introduced by Krizhevsky et al. in [14], emerged as 
the pioneer of modern deep CNNs in the realm of image 
classification. The CNN architecture comprises sequential 
layers, organized as follows: convolutional layers, triggered 
by a chosen activation function, pooling layers, and fully 
connected layers. A convolutional layer involves sliding a 
filter/kernel across the input data, performing convolutions. 
Depending on patterns and spatial information, a filter can 
extract various features, yielding a feature map as its output. 
The activation function serves to introduce non-linearity into 
the network, with ReLU and its derivatives being the most 
prevalent choices [15]. The pooling layer plays a dual role in 
neural networks; it extracts essential information from the 
feature map while concomitantly diminishing computational 
complexity. For instance, a widely employed technique is 
Max pooling [16], wherein the highest value within a given 
region signifies the entire content of that region. Finally, the 
feature map is flattened into a one-dimensional array and fed 
into the fully connected layers for classification and 
prediction. The choice of the final function depends on the 
particular task. For multivariate classification problems, one 
common choice is the SoftMax function [17]. To evaluate the 
error, i.e., the disparity between the prediction and the actual 
value, a loss function is employed. Once again, the choice of 
this function is contingent on the nature of the problem being 
addressed. An optimization algorithm is then utilized to 
minimize the loss function and refine the accuracy of the 
network predictions. A frequently used algorithm is the 
Adam Optimizer and its variants [9]. In summary, the input 
data undergoes a series of transformations through the 
convolutional layer, followed by summarization, flattening, 
and prediction computation. This iterative process involves 
updating the network weights to minimize the loss function, 
enhancing the accuracy of predictions with each iteration. 

IV. CASE STUDY AND RESULTS 

A. Case Study Description 
As a case study to assess the performance of the proposed 

diagnosis method a medium size expander-compressor 



supported by AMBs for oil and gas application was 
considered. The rotor has a mass of about 220 kg and a length 
of about 1.233 m. For what concerns the electrical part, the 
controller structure was composed by augmented PIDs. 
Additionally, other components included switching pulse 
width modulation (PWM) amplifiers coupled with 
heteropolar AMB actuators and inductive position sensors 
operating within a 2.5 kHz bandwidth. Under nominal 
conditions, the system features a nominal rotation speed of 
6920 rpm and a native unbalance of 1.45 × 10,-  kgm 
positioned at the center of mass of the rotor.  

For this case study, tolerance parameters encompassed a 
2% variation in sensor sensitivities, sensor biases of 1 μm, 
and Gaussian white noise characterized by a standard 
deviation of 1 μm. Regarding the actuators, a 2% tolerance of 
the DC gain was taken into consideration. Since the number 
of impellers of the system is two, the fault classes considered 
were four, considering two circular sector per impeller (𝛽+ 
and 𝛽)), as shown in Fig. 2. The five classes and the number 
of examples per class are summarized in Table I. The faulty 
conditions that were taken into account to form the classes of 
the fault dictionary were simulated with a Monte Carlo 
analysis by varying the fault unbalance magnitude in the 
range [0, 6.00 × 10,-] kgm and its phase in the prescribed 
range using a uniform distribution.  

TABLE I.   

Class Name Example 
Class Size 

Nominal Condition 3000 

Expander fault in 𝛽! 2000 

Expander fault in 𝛽" 2000 

Compressor fault in 𝛽! 2000 

Compressor fault in 𝛽" 2000 

B. Proposed CNN Model 
As anticipated, the CNN classifier is designed with the 

specific aim of identifying five classes: the Nominal 
Condition, two unbalance faults on the expander impeller and 
two unbalance faults on the compressor impeller. The 
classifier structure is illustrated in Fig. 3. It comprises a series 
of stacked convolutional, pooling, and fully connected layers. 
The input to the network consists of a grayscale image 
depicting two orbits from sensors, one for each AMB, while 
the output gives the probability distribution across the five 
classes. As previously mentioned, when the activation 
function triggers a convolutional layer, it extracts key 
features utilizing filters. These outputs are then aggregated 
through max-pooling and subsequently classified by the fully 
connected layers. All convolutional layers employed are 1D, 
simplifying network complexity and computational load. 
They have a kernel dimension of 3 × 3 , and a stride 
dimension of 1 × 1, activated by a ReLu function [15]. The 
max-pooling operation is executed with a stride dimension of 
2 × 2 . The initial convolutional layer features one input 
channel and produces eight output channels. The second 
convolutional layer mirrors this configuration with eight 
input and output channels. This approach is employed to 
expand and then consolidate information, emphasizing 
critical features. This process also serves to mitigate gradient 
explosion following a max-pooling layer. Subsequently, a 

batch normalization step is implemented to preclude dropout 
usage, as demonstrated in [18]. This ensures that initialization 
does not unduly impact results. The final two convolutional 
and max-pooling layers are helpful in amalgamating and 
distilling output from preceding layers, extracting only the 
most significant features, including intricate patterns and 
structures. Subsequently, the fully connected component 
commences. Initially, the data vector undergoes a 
transformation into a one-dimensional tensor, after which 
three linear layers are trained. These layers progressively 
reduce the vector dimension until arriving at the five 
classification classes. In this study, an Adam Optimizer [9] 
was employed to optimize algorithm efficiency, balancing 
computational resources and memory usage. The 
architectural implementation was executed utilizing the 
PyTorch libraries.  

 
Fig. 3.  CNN proposed model structure, the numbers below the layer 
represent the input and output channels.  

C. Results  
The dataset, obtained as described in the previous section, 

is composed of 3000 examples of the fault free condition and 
2000 examples for each of the other 4 fault classes. The 
training set includes 80% of the examples and the test and a 
validation set collects 10 % of the remaining examples each. 
Each image had a size of 224×224 pixel.  

The model was trained using the pre-processed training 
set (employing a batch size of 32) for a total of 300 epochs, 
using a learning rate of 10,. . This training process took 
approximately 4 hours, utilizing a GPU NVIDIA RTX A6000 
with 48 GB GDDR6. Validation of the proposed 
Convolutional Neural Network (CNN) was carried out using 
the test dataset, where it achieved an accuracy of 
approximately 98%. Simultaneously, the training dataset 
yielded an accuracy of around 99%. The obtained 
interference time is 2 × 10,- s, thereby validating the 
feasibility of implementing the proposed model in real-time 
applications. These results are graphically represented in Fig. 
4 and Fig. 5 showcasing respectively test set accuracy and 
training set performance. 
Fig. 6 illustrates the test and accuracy ratio, which shows the 
relationship between the training and test accuracies depicted 
in Fig. 4 and Fig. 5. The declining trend observed in this graph 
suggests that the estimated parameters of the CNN remain 
unaffected by overfitting. This observation implies that the 
model has achieved a good level of generalization, indicating 
its capability to effectively apply learned patterns and make 
accurate predictions when confronted with previously unseen 
data. 

Furthermore, Fig. 7 presents the resulting confusion 
matrix, in which the horizontal axis represents the actual 
faults, and the vertical axis represents the predicted faults. 
The diagonal elements represent the percentage of accurate 
predictions, while values above the diagonal denote false 
positives, and those below signify false negatives. As 
depicted in Fig. 7, the confusion matrix displays a notably 



diagonal pattern, with even the lowest values hovering 
around 98%. Most misclassifications primarily are associated 
with minor parametric deviations from the fault-free 
condition. The achieved accuracy in recognizing these faults, 
even with small parametric variations, is quite satisfactory for 
two key reasons. First, the regions of parameter variation 
related to faults closely border the tolerance regions. Second, 
the limited image resolution contributes to some classes being 
recognized less accurately, specifically those associated with 
orbits that exhibit minor differences compared to the 
reference orbits when subjected to slight parameter variations 
beyond the tolerance, as there are no clear-cut boundaries 
between faulty and fault-free conditions. However, it's worth 
noting that false positives or negatives in these borderline 
situations do not have significant consequences.  
Similar accuracy was also achieved in [4] where a 3D 
convolutional neural network was implemented to identify 
electrical faults, and in [19] where several convolutional 
neural networks were tested to identify simpler mechanical 
faults. 

IMG 
Fig. 4.  Train accuracy for each epoch. 

IMG 
Fig. 5.  Test accuracy for each epoch. 

IMG 
Fig. 6.  Train and test accuracy ratio plot. 

V. CONCLUSION 
Active Magnetic Bearings are gaining prominence across 

various rotating machinery applications owing to their 
exceptional performance and the elimination of cumbersome 
lubrication systems. However, their operation necessitates a 

complex closed-loop mechatronic system. To ensure safe 
and reliable operation, the deployment of fault detection and 

diagnostic systems becomes imperative. 
The novel approach presented here for fault diagnosis 

leverages sensor signals within an AMB system to build a 
fault dictionary with the aim of training a classifier – a 

straightforward convolutional neural network. This classifier 
has been specifically trained to locate the unbalanced faults 

in the turbomachine impellers. The proposed classifier 
demonstrates remarkable accuracy and generalizability, all 
while requiring a modest amount of data. Importantly, this 

approach can be readily extended to address other fault 
types and can be applied to a variety of AMB-supported 

systems systems.

 
Fig. 7.  Confusion matrix of test set.  
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