
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2022 IEEE

Automating Heterogeneous Internet of Things Device
Networks from Multiple Brokers with Multiple Data Models

Pierfrancesco Bellini
Distributed Systems and Internet Technology

Lab DISIT, Florence, Italy
0000-0002-8167-1003

Chiara Camerota
Distributed Systems and Internet Technology

Lab DISIT, Florence, Italy
0000-0002-0363-2404

Paolo Nesi
Distributed Systems and Internet Technology

Lab DISIT, Florence, Italy
Paolo.nesi@unifi.it ,

https://www.snap4city.org
0000-0003-1044-3107

Abstract — The Internet of Things (IoT) is becoming
pervasive and with each new installation of the IoT platform
legacy internal and external brokers have to be integrated.
Internal brokers are those under the control of the platform,
while external brokers are managed by third parties. Both
brokers kind may be multiservice / multi-tenant and may
manage multiple Data Models. The interoperable management
of these complex networks has to pass from the IoT device
registration which is typically a re-current operation since the
IoT networks are in continuous evolution. In this paper, the
above-mentioned problems have been addressed by the
introduction of our concept of IoT Directory and reasoning tools
to (i) manage Internal and External brokers, (ii) perform the
automated registration by harvesting and reasoning of devices
managed into external brokers single- or multi-tenant services,
(iii) perform the automated registration and management of
Data Models, and any custom Data Model. The solution has
been developed and tested into Snap4City, an 100% open-source
IoT platform for Smart Cities and Industry 4.0, the official
FIWARE platform, EOSC, and lib of Node-RED. The specific
IoT Directory has been developed in the context of the Herit-
Data Project, the results have been validated in wide conditions
of the whole Snap4City network of more than 18 tenants, and
billions of data.

Keywords— Automated IoT (Internet of Things) Device
Registration, Internal and External IoT (Internet of Things)
Brokers, IoT (Internet of Things) Network, Smart Data model,
Snap4city

I. INTRODUCTION
The Internet of Things (IoT) defines a paradigm for the
computation and communication among things that everyone
uses more and more daily [1]. It is due to the intense
deployment campaign worldwide about Low-Power Wide
Area Network technologies [2]. Nowadays, the real world
and IoT devices are integrated tother with some humans in
the loop. Communication among devices may support
various protocols (e.g., Message Queue Telemetry Transport
or MQTT, Next Generation Service Interfaces or NGSI,
Advanced Message Queuing Protocol or AMQP, Constrained
Application Protocol or CoaP) thus, the cloud-fog
infrastructures are exploited, as well as the management of
the information [3]. In terms of data management, the
complexity is growing, not only for the huge amount of data
but also for the need of interoperability and abstraction. The
Gateway concept is a relevant entity to manage IoT devices
into an IoT Platform. It may be integrated with one or
several IoT Brokers to send/receive data to/from devices.
The Gateways and its IoT Brokers are typically based on a
single protocol and managed by third parties as a public

service for several customers interested in the same area (for
example LoraWAN services [4]). A Gateway may abstract
from the IoT Broker level managing them for multiple
organizations/tenants (which can be regarded as customers of
Gateway services to manage a number of IoT Devices), via
some API and/or Web user interface. Typical IoT Brokers are
capable to manage only one organization, and thus they are
single-tenant, in the sense that they broker messages using the
topic concepts (which can be regarded as the key for
subscription) without any internal partition of services as a
sort of family of devices and subscriptions. Some IoT Brokers
can be multi-tenant, such as the FIWARE Orion Broker,
which provides a partition of the devices in groups, and each
of them may have a dedicated service/path for a specific
scope (or of a specific customer). Furthermore, devices of
different tenants could exist physically in different places
(even having identical IDs), and the subscription to the
broker’s tenant may imply getting all messages/services in
the partition. That is feasible only if the subscriber knows the
identifier of the service path and, in the cases of access
control, has the grant to access at the services. The
complexity of IoT Platforms grows with the need of
managing multiple IoT Brokers which can be managed by
third parties different from the IoT Platform manager, i.e.,
IoT External Brokers, and/or directly managed by the IoT
Platform-tools, i.e., IoT Internal Brokers, can be adopting
different protocols, formats.
For the IoT External Brokers, the entities (IoT Devices) are
directly registered on the IoT Broker which is not under the
control of the IoT Platform. Thus, the IoT Platform does not
know the IoT Device data structure nor the composition of
messages and services. Most of the IoT Platforms neglect
these interoperability and integration aspects and provide
simplified solutions. They do not care about Internal/External
Brokers, just providing the possibility to set up end-to-end
solutions with some restricted usage, for example using only
internal brokers they provide. Thus, AWS IoT by Amazon
(AWS) [5] and Siemens MindSphere [6] make the broker
structure transparent to their users unless they buy a specific
add-on. While IoT Platform like Google IoT Cloud (Google
IOT) [7] shows the Broker architecture but allows the usage
of only one kind of protocol (e.g., MQTT). At least, solutions
like MS Azure IoT (MS Azure) [8] or IBM Watson [9] are
more flexible. MS Azure does not provide to cluster their
objects, in other words, supporting only one organization on
broker; the IBM solution does not allow the connection of
External Brokers. In summary, most of the solutions provide

mailto:Paolo.nesi@unifi.it
https://www.snap4city.org/

simple scenario, and mainly assume to have customers
starting to use their solution from scratch (on cloud or on
premise), offering limited capabilities to deeply integrate the
platform with legacy IoT Broker and Network. Nevertheless,
all of them provide the possibility of connecting to other IoT
Brokers and Network by means of REST Call on API.
Naturally, in those scenarios, the third-party brokers are not
directly connected and neither managed in terms of IoT
Device registration, subscription, data storage, search, etc.
Different IoT Devices connected to the same broker adopt the
same protocol and may use different data models. If the
message format is based on JSON, the corresponding schema
may be defined and used for validation, while
variables/attributes can be differently defined. For example,
FIWARE Orion Broker adopts the NGSI protocol with the
possibility of managing the so-called Smart Data Models
from which IoT Devices can be templated out [10]. The IoT
Platform or Gateway must recognize these IoT Device
Models and manage them (registering, processing,
producing, storage, etc.). In the case of IoT External
Brokers, the IoT Platform may not know the IoT device
models, and neither the identifier (topic) of the External IoT
Devices. Hence, at the arrival of a message from an unknown
device (which can partially provide information in its body,
typically not the metadata, since most of the devices
minimize the data transmission), the IoT Platform is not in
the condition of registering the device, and neither to correct
link the message to the former devices. Thus, the devices and
messages are easily managed when a new external device is
added to the IoT Platform if the data model adopted is known.
In other words, if the IoT Platform knows the data model
adopted by a device it is easier to identify the data structure
and so it could automatically manage the relationships among
data entities and verify coherence. For all these reasons, the
Data Model concepts and formalisms are crucial.
In this paper, the above-mentioned problems and other
aspects have been addressed to design and implement a
solution for leveraging IoT network interoperability and the
management of Data Models. To this end, we have created
the concept and tool named IoT Directory in the Snap4City
architecture [11]. The IoT Directory supports: (i) Internal
and External brokers, (ii) the automated registration of
devices managed into External Brokers single- or multi-
tenant services, (iii) automated registration by harvesting and
reasoning of IoT Devices compliant with standard models
such as FIWARE Smart Data Model, and any custom Data
Model in Snap4City IoT Device Model providing a formal
semantic definition of attributes. The research presented in
this paper has been developed for Snap4City architecture
presently quite diffuse in Europe as 100% open source IoT
platform for Smart Cities and Industry 4.0 and it is an official
FIWARE platform and solution, and of EOSC, Node-RED
[12], [13]. The specific IoT Directory has been developed in
the context of Herit-Data Project which promotes the use of
smart and open data to better manage tourism flows in natural
and cultural heritage sites, the results have been validated in
wide condition of the whole Snap4City network of more than
18 tenant, and billions of data.

The paper is organized as follows. Section 2 presents the
major requirements for data model and broker
interoperability in IoT Platforms. Section 3 shows the role of
IoT Directory in IoT architecture for managing
internal/external brokers with the aim of automated
registration, management vs data models and formal
definition of their attributes. In Section 4, some details
regarding the validation of the solution are reported. The
validation included verifying the processing timing and
giving a general numeric KPI about the shape of the entities.
In Section 5, the conclusions are drawn.

II. REQUIREMENTS ANALYSIS AND RELATED WORK
In this section, the requirements that an IoT Platform for IoT
Network management and exploitation should satisfy are
reported and commented on. They have been identified in the
context of workshops, conventions, and analysis for the
development and exploitation of the Snap4City platform
covering smart city and Industry 4.0 domains. The
requirements for the IoT Platform are presented in logical
order from R1 to R10 as follows. The following list of the
requirement refer also to a set of well-known platforms:
AWS, Google IOT, MS Azure, Siemens MindSphere and
IBM Waston. Therefore, an IoT Platform should provide
support to:

1.Manage different kinds of IoT Brokers, IoT Devices
and IoT Edge Devices. They should be based on
different protocols, formats, and modalities to establish
connections with the IoT Platform. Focusing on the
Platform considered, all of them support MQTT and
HTTP, while Google IoT and Azure IoT support only
MQTT Broker. It is important to highlight that most of
the platforms provide specific components for different
protocols, for instance: Amazon MQ that supports Broker
with AMPQP, MQTT, OpenWire and STOMP protocol.

2. Connect External and Internal Brokers. They could be
multiservice and could provide different protocols.
Internal Brokers should be deployed and registered by the
IoT Platform, while the External Brokers would be only
registered to use them. In the Platform considered, the
brokers are the products’ core of stakeholders offers, for
this reason the requirement is partially satisfied. In that
sense, AWS IoT and Siemems MindSphere offer a paid
add-on.

3. Register, manage and use messages conformant to any
Data Model with any data type. Providing, receiving,
managing, storing, and retrieving messages for any IoT
Device of any Data Model with its attributes and data
types, and related access control. A Data Model provides
a model format for IoT Device messages with several
variables/parameters/attributes with their specific data
types. For the listed Platforms, the messages from the IoT
Devices are freely shaped, so to assure the data flexibility
to the detriment the data model. For example, Google IoT
and IBM Watson use formats as JSON or XML.

4. Verify the correctness of IoT Messages of IoT
Devices. The platform should be capable of verifying

correctness of messages in terms of model and format
including verification at level of attributes, before
accepting/sending them. Please note: this requirement is
satisfied by each solution considered since the IoT
Devices are formally defined at the registration phase.

5. Semantic Interoperability. This requirement is
fundamental to achieve the coherence among different
IoT Devices (e.g., provided by different builders,
addressing the same concepts, information on attributes).
An IoT Platform should be capable to
recognize/classify/retrieve information/attributes and
behave accordingly to the semantic data model and types.
For example, an IoT application should not risk
misunderstanding the unit of measure assigned to
attributes of different devices which have the same name,
but different units.

6. Support automatics deploy of Internal IoT Brokers.
The IoT Platform should provide support for the
automated deployment of IoT Broker internally managed.
And thus, Internal Brokers are directly managed by the
Platform which directly performs the registration of IoT
Devices on them. The result is an easy experience for the
user and an easy way to populate the network. This
requirement can be implemented only if the Platform
allows the registration and the management of new IoT
Brokers. For this reason, this requirement is satisfied only
in the Core of Siemens MindSphere and by all FIWARE
Platforms for definition.

7. Register External Brokers. The platform must support
the registration of IoT External Brokers. This means that
the IoT Platform should be capable of registering IoT
Devices/Services of the External Broker into the IoT
Platform. Brokers can be single- or multi-tenant and to
recover the IoT Devices data model managed by the
Broker is the first step to perform their registration. In the
case of External Broker, the endpoint URL and the
service and/or service path specifications would be
needed to subscribe. None of the commercial platforms
considered provides a solution for registering External
Brokers, and thus making automated registration of their
devices.

8. Discover IoT Devices on IoT Brokers. The platform
must be capable to abstract IoT Devices from their IoT
Brokers and protocols. This is needed for their

registration and for their classification and search,
which is based on their position, nature, value types and
units, etc. In other words, it should be possible to
discover/search (subscribe, get, send data) to/from IoT
Devices independently from their position/connection in
the IoT Network. The process of discovery must be
manageable in the sense that its execution time can be
scheduled, and possible with brokers that support a
process for device discovery. The result should consist of
an automated or semi-automated registration process of
IoT Devices.

9. Easy management graphic interface to list and test
IoT Brokers, and IoT Devices and query them. For each
IoT Device, it has to be possible to perform testing
activities. As seen before, not all the above-mentioned
Platforms manage the IoT Broker, unless they use a
specific add-on. So, this requirement is satisfied by each
of them only for the kind of Devices they put on the offer.

10.Manage IoT Device Model and Device Data Type
ownership and access grant. This permits
assignment/changing of the ownership and the creation of
access grants to the entities (Brokers, Devices, Models,
etc.). In delegation management, it must be possible to
list them (check the grants provided) and revoke the
delegations. According to GDPR, any entity must start as
private of the owner. The delegation should be possible
for organizations, groups of users, and single users.

On other aspects, surveys about IoT Platforms are
provided in [14], [15], [16].

III. THE ROLE OF IOT DIRECTORY IN SNAP4CITY
ARCHITECTURE

In order to enforce the above-described requirements into
Snap4City IoT Platform, we have designed and developed a
new concept that we have called IoT Directory. It extends the
features of generic IoT Platforms with the management of (i)
IoT Data Models, (ii) IoT External Brokers, (iii) discovery of
IoT Devices of External Brokers, (iv) support the multi-
tenancy, (v) support several organizations, (vi) GDPR
compliance, etc.
In Fig.1(left), the registration process of IoT Brokers
(Internal or External) in the Snap4City Platform is reported,
where the organization is denoted by the subscription in the

Figure 1. (left) registration of an IoT Broker, (right) registration of an IoT Device. The solid lines indicate the registrations, while the
dashed lines indicate the data flow of the subscriptions.

Broker name. At the Broker registration into the IoT
Directory, a number of parameters are needed including: the
end point, security, name, External/Internal, single/ multiple-
tenant, etc. The most important difference for
Internal/external Brokers consists in the IoT Device
management as explained in the following. The broker to be
usable has to be granted to each specific user or public [13].
An user only belongs to a single organization for security and
privacy aspects.
Once a Broker is registered, the IoT Directory automatically
performs the subscription of the data platform to the new
Broker for all its devices/topics, so that each new message
that will be generated by the broker would be directly
brokered to the data storage. In Fig.1(right), the
subscriptions are denoted by dashed lines, while the
registrations are shown as solid lines. In most of the IoT
Platforms, the storage is called Data Shadow, and allows to
create the historical data of the IoT Devices. In Snap4City,
the data storage feeding is performed by Apache NiFi, so that,
the IoT Directory automatically performs the association
between NiFi and the topics of the new Internal or External
Broker. This is due to the necessity of having a robust,
scalable tool with low latency to handle huge volume of data
entering on the storage and coming from several devices and
brokers. In Fig.1(right), the processes of IoT Device
registrations are depicted in both cases. In the case of
Internal Brokers, the IoT Device registration is performed
on the IoT Directory. The user may select the IoT Broker
among those of the Organization and set a number of details.
The registration may start with the exploitation of an IoT
Device Model, the device ID, and then with the definition of
GPS location, and all instance details. In Snap4City, the
process can be performed: (i) on the IoT Directory via the
user interface exploiting a model or not, (ii) exploiting API
of the IoT Directory, (iii) using MicroServices in Node-RED
which are based on the same API of (ii), (iv) using a set of
automated registration processes starting from Excel
Files/tables. Each registered IoT Device is registered on the
Knowledge Base, KB, (implemented with Virtuoso on the
basis of Km4City Ontology [17] for the semantic
relationships and with Open Search for the time Series data)
with all its information and metadata (static information). The
KB management allows to index the device and establish all
the relationships with the other city entities located in the
same area, place, city, region, road, GPS position, etc. This
information would be very useful when new messages arrive
from a IoT Device in the storage via NiFi (which is
represented by the ServiceMap in Fig.1(right), with Smart
City API for providing access to the storage) they are
connected to the right IoT Device description and
relationships. The correct and complete indexing and Smart
City API are fundamental to enable the exploitation of IoT
data by IoT Applications (Node-RED microservices [14])
and Dashboards [16].

Finally, Fig.2 shows the data flow during the usage, it
illustrates the event-driven data flows. There are four ways
for generating new IoT Messages, from:
• IoT Devices pass from a Broker and are passed to: (a)

the NiFi, thus reaching the KB and storage, becoming

part of historical data which can be accessed and queried
from IoT App, Data Analytic and Dashboards; (b) Kafka
to directly reach subscribed Dashboards via WebSockets,
and IoT App.

• IoT Apps may be sent to IoT Broker or to Kafka front
end broker. Thus, the message can reach: IoT Device for
acting on it, storage, IoT App, Dashboards, etc. If a
message is sent by a sensor-actuator (Internal or
External), his Broker broadcasts it to Ni-Fi, which
spreads it in turn. The IoT Apps are also used for massive
registration of IoT Devices, and to perform data
adaptation, ETL/ELT (Extract Transform/Load)
processes.

• Dashboards are passed via Kafka toward the IoT App,
or to an Internal Broker or direly into the storage. These
messages can be regarded as Virtual IoT Devices to act
on some sensors/actuators IoT Device, or even to
simulate it. The produce messages may be sent to
Internal/External Brokers, and so on.

• IoT Directory may generate a new message towards an
IoT Broker (and may also read the last message from the
broker). The generation of messages from the IoT
Directory is typically used to check if the Internal Broker
is alive and works correctly, and if the IoT Device
messages are accepted.
In the case of registration of IoT Devices on an
External Broker, the Broker is not managed by the IoT
Directory, and thus the Devices are registered in the
External Broker by the third-party gateway manager
without informing the IoT Directory. Thus, the IoT
Directory need to recover the information needed for
registering and indexing the devices into the KB. Then,
the IoT Directory queries/harvest the external broker to
get the structures of the IoT Devices (also called
Discovery has to be started). The harvesting process may
start having the broker API end point and also the service
path in the case of the multi-tenancy broker. The
harvesting has to be performed at the broker registration
and every time a new Device is added, thus a periodic
Discovery is needed. For the harvesting, the IoT
Directory recognizes the Data Model and Data Types of
the attributes to register them in KB in proper manner, to
validate them. In the following subsections, the
registration of IoT Devices on Internal and External
Brokers are discussed. Please note that the registration of
devices from External Brokers is one of the innovative
aspects addressed by the IoT Directory which is capable
to harvest the brokers and resolving semantic gaps on
IoT device attributes/variables, see Section 3.2.

A. Registration of IoT Devices on Internal Brokers
The IOT Directory is fundamental for the definition and
registration of IoT Device Models, i.e., data models.
Focusing on the Internal IOT Brokers, the platform provides
three ways to deploy IoT Devices:
• Manual process: the user can register an IoT Device by

using a graphic interface, to input information. It is
possible to register a device on the basis of a specific IoT
Device Model, and to refer at a specific IoT Broker.

● Bulk process: the user can upload a file with a list of
Devices, defining the IoT Broker, Model and Edge.
● IoT App process: The user can build an IoT APP
using Node-RED on which specific nodes can be used.
The nodes accept JSON with parameters related to the
chosen Device Model to register new Devices (see Fig.4).

The registered IoT Devices are shown in a table in which
the users can manipulate only those he/she created, no
matter of the generation process. The users can also see in
the list the public devices of the same organization, while
the general administrator has a full visibility of all devices
of all the organizations.

B. Discovering & Registering IoT Devices from External
Brokers

The Snap4City Platform allows the registration of External
Brokers using the broker URL or the couple URL and service
identifier in the case of multi-tenancy. After the registration
of an External Broker, the user can start the harvesting
process and choose the time period for the update. It is
important to highlight that Snap4City Platform may know a
set of IoT Device Model (data models). Thus, in the best case,
when the harvesting starts, it can recognize the device and its
model (message format and device ID).
If the IoT Directory does not recognize the Device, the
Device has to be Registered. To this end the IoT Directory
can query the Broker to have more information to register it.
On the other hand, the IoT Device may be compliant with a
Data Model or not. If it is compliant the registration is straight
forward. It is not compliant, each single attribute has to be
recognized in terms of Value Type, Value Unit and Data
Type (e.g., Temperature, Celsius, Float). The list of
recognized/registered and non recognized/non registered
Devices is presented. Through this interface, the user can
resolve the problems manually defining the missing data and
enabling the registration.
The most common harvesting (automated registration
process) problem are due to the lack of matching with known
attributes. The IoT Platform tries to identify the attribute kind
in terms of value type, value unit and data type by performing
query on data Dictionary and Km4City Ontology (via the
connection from IoT Directory and ServiceMap by using

Smart City API, and Dictionary API, Fig. 2. The recognition
may have success in two cases: the data model is known but
not this specific attribute or the model is not known, so all the
attribute values of the Device are not recognized. In the first
case is easy to fix the problem by applying a specific rule. In
the second case, the Platform needs to learn a Rule for solving
the attributes, thus defining a new Data Model in IoT
Directory. Formally, the processing rule R is defined in
EBNF as following:

R:= IF <condition list> THEN <action list>
<condition list>: = <c> | <c> AND <condition list>
<c> := <variable> <op> <constant>
<variable> := “device name” | “context broker” |
“device type” | “model” |
 “value name”
<op> := “is equal” | “is not equal” | “Is null” |

“contains”
<constant> := integer | float | string | list
<action list> := <a>| <a>, <action list>
<a> :=<action variable>: <action constant>
<action variable>:= “Data type” | “Value type” |

“Value unit” | “Editable” | <Coded Healthiness criteria> |
<Healthiness value>

<action constant>:= string

The rule is divided into two parts: If statement and then
statement. In the first part, the user can define the condition
that describes a set of devices, e.g., a device name in common.
The <op> defines the operators, two of them (“is/ is not
equal”) can apply only on the number constant, others (“Is
null” or “contains”) only on the string constant. In the second
part, the user can establish the action that makes devices or
values valid. In other words, for the subset of Devices identify
by the <condition list>, the <action variable> is modified as
defined by <action constant>. An example of Rule can be:

IF “context broker” is equal “CONTEXTBROKER”
AND “value name” is equal “activePower”
THEN “value type”:“power”, “value unit”:“W”, “data

type”:“float”

In this case, the rule’s builder selects a subset of invalid
attributes named activePower, which have the Device
subscripts a Broker named CONTEXBROKER which allows
to manage the multi-tenancy aspects. Then, it changes the
value type, the value unit and the data type in power, W and
float.

In the IoT Directory, it is possible to search and edit the
saved rules. When the user saves a rule, must choose the
broker to which is applied. It is also possible to define a
specific subset of service or service and service path to cope
with multiservice brokers. Thus, the application of a rule is
associated to each specific Broker or Organization since a
Rule can be suitable for an organization and not functional for
the others. Figure 5 illustrates the form of the rule builder.

IV. VALIDATION EXPERIMENTS
As above discussed, the harvesting of External Brokers may
take into account one or more rules to recognize the attributes
and data models, and thus to indexing the IoT devices in the
right manner, and shortening time to registration,

Figure 2. IoT Messages exchanged among entities: continuous
lines are data flows, dashed lines indicate the tests that the user

can perform to verify the IoT Devices/Brokers.

dynamically add new IoT Devices registered on the Broker,
thus reducing the gap from using Internal and External
Brokers. The following validation values are calculated doing
ad hoc experiments, which are repeated ten times. Focusing
on the timing of the various processes, the user spends around
1 minute and a half on average to fill the form to add a new
device with 10 attributes, and the system spends around 3
seconds to register the device. Meanwhile, if the user builds
a device from a model, these timings are less than 1 minute
on average to fill the form and around 1,35 seconds on
average to submit the new device. Furthermore, if the user
records a new device through IOT App, the system registers
it in 623 milliseconds on average.

Figure 3. User interface in Node-RED for the creation of the

device by IoT App is shown.

Focusing on the registration timing and considering an
external multi-tenant broker with 37000 devices, the
harvesting time is 25 minutes and 50 seconds on average.
Meanwhile, the process’s timing of the attributes of a specific
FIWARE data model (Streetlight) ingestion is 37.1406
milliseconds on average, which results in the addition of 432
new Streetlight devices automatically. Of course, the user can
make changes to IoT Devices structure after their automated
or manual registration.

V. CONCLUSIONS
 The proliferation of the IOT devices, brokers, networks,
data models, operators and tenant, make the harmonization
and management for IoT Platform a hard goal. This paper
offers an analysis and a comparison among relevant existing
platforms and delineates the basics requirements to achieve
these aims. These identified requirements are in most cases
not addressed by major platform which prefer to stay on their
own end-to-end solutions with limited interoperability and
capacity of exploiting the legacy IoT networks in place. The
interoperable management of complex network has to pass
from the IoT device registration which is typically a recurrent
operation since the IoT networks are in continuous evolution.
In this paper, the above-mentioned problems have been
addressed introducing our concept of IoT Directory and
reasoning tools to (i) manage Internal and External brokers,
(ii) perform the automated registration by harvesting and
reasoning of devices managed into external brokers single- or
multi-tenant services, (iii) perform the automated registration
and management of Data Models, and any custom Data
Model. The solution has been developed and tested into
Snap4City, an 100% open source IoT platform for Smart

Cities and Industry 4.0, official FIWARE platform, EOSC,
and lib of Node-RED. Thus, the resulting platform is more
flexible than the others considered (Google IOT Cloud, MS
Azure, AWS, Siemens Mindshare and IBM Watson).
Furthermore, the proposed solution is also compliant with
Smart Data Model of FIWIRE. The semantic interoperability
of the platform can be improved by automatic generation of
rules and completing the automation of the ingestion process.
Furthermore, the process is helped by Km4City ontology and
Data Dictionary to recognize the new or model data’s
semantic domain. The specific IoT Directory has been
developed in the context of Herit-Data Project, the results
have been validated in wide condition of the whole
Snap4City network of more than 18 tenant, and billions of
data.

ACKNOWLEDGMENT
 The authors would like to thank the MIUR, the University
of Florence and the companies involved for co-founding the
Herit-Data project. Km4City and Snap4City
(https://www.snap4city.org) are open technologies and
research of DISIT Lab. Sii-Mobility is grounded and has
contributed to the Km4City open solutions.

REFERENCES
[1] Ghasempour, Alireza. "Internet of things in smart grid: Architecture,

applications, services, key technologies, and challenges." Inventions
4.1 (2019): 22.

[2] Mekki, Kais, et al. "Overview of cellular LPWAN technologies for
IoTdeployment: Sigfox, LoRaWAN, and NB-IoT." 2018 ieee
international conferenceon pervasive computing and communications
workshops (percom workshops).IEEE, 2018.

[3] Yousefpour, Ashkan, et al. "All one needs to know about fog
computing andrelated edge computing paradigms: A complete survey."
Journal of SystemsArchitecture 98 (2019): 289-330.

[4] Adelantado, Ferran, et al. "Understanding the limits of LoRaWAN."
IEEECommunications magazine 55.9 (2017): 34-40.

[5] https://aws.amazon.com/iot
[6] https://siemens.mindsphere.io/en
[7] https://cloud.google.com/solutions/io
[8] https://azure.microsoft.com/en-us/overview/iot
[9] https://ww.ibm.com/watson
[10] https://www.snap4city.org
[11] Cheng B., G. Solmaz, et al.,"FogFlow: Easy Programming of IoT

Services Over Cloud and Edges for SmartCities," in IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 696-707, April 2018,doi:
10.1109/JIOT.2017.2747214.

[12] Badii C., P. Bellini, A. Difino, P. Nesi, G. Pantaleo, M. Paolucci,
"MicroServicesSuite for Smart City Applications", Sensors, MDPI,
2019. https://doi.org/10.3390/s19214798

[13] Badii C:, P. Bellini, A. Difino, P. Nesi, "Smart City IoT Platform
RespectingGDPR Privacy and Security Aspects", IEEE Access,
2020.10.1109/ACCESS.2020.2968741

[14] Ammar, Mahmoud, et all. "Internet of Things: Asurvey on the security
of IoT frameworks." Journal of Information Security andApplications
38 (2018): 8-27.

[15] Ray, Partha Pratim. "A survey of IoT cloud platforms." Future
Computing andInformatics Journal 1.1-2 (2016): 35-46.

[16] Bellini P., D. Cenni, et al, "Smart CityControl Room Dashboards: Big
Data Infrastructure, from data to decisionsupport", Journal of Visual
Languages and Computing, 10.18293/VLSS2018-030

[17] Bellini P., D. Nesi, et al, "Federation of Smart City Services viaAPIs",
Proc of 6th IEEE International Workshop on Sensors and Smart Cities,
with IEEE SmartComp, 14-17 Sept. 2020, Bologna, Italy.
http://ssc2020.unime.it/

https://www.snap4city.org/
https://aws.amazon.com/iot
https://siemens.mindsphere.io/en
https://cloud.google.com/solutions/io
https://azure.microsoft.com/en-us/overview/iot
https://ww.ibm.com/watson
https://www.snap4city.org/

	I. Introduction
	II. Requirements analysis and related work
	III. The Role of IoT Directory in Snap4City Architecture
	A. Registration of IoT Devices on Internal Brokers
	B. Discovering & Registering IoT Devices from External Brokers

	IV. Validation Experiments
	V. Conclusions
	Acknowledgment
	References

